Modulhandbuch
Bachelor Biologie SPO 2010 (B.Sc.)
und der Studienrichtung Angewandte Biologie (B.Sc.)
Wintersemester 2013/2014
Kurzfassung
Stand: 11.11.2013
Inhalt
1 Studienplan Bachelor Biologie .. 3
2 Studienplan der Studienrichtung Angewandter Biologie .. 5
3 Nützliches und Informatives .. 7
 Das Modulhandbuch ... 7
4. Module .. 9
 Qualifikationsziele Bachelor Biologie ... 9
1. Semester ... 11
 Modul B01 Allgemeine Biologie .. 11
 Modul B10 Chemie (Anorganik) ... 20
2. Semester ... 23
 Modul B02 Allgemeine Biologie 2 ... 23
 Modul B10 Chemie (Organik) ... 36
3. Semester ... 39
 Modul B03 Allgemeine Biologie 3 ... 39
 Modul B10 Chemie (Biochemie) .. 48
 Modul B11 Mathematik ... 49
 Modul B12A / ANG 12A Physik (Teil A) ... 51
4. Semester ... 52
 Modul B04 / ANG-04 Allgemeine Biologie 4 .. 52
 Modul B05 /ANG 05 Schlüsselkompetenzen 1 .. 56
 Modul ANG 11B Quantitative Biologie und Modellierung (für Angewandte Biologen) 59
 Modul B12B / ANG 12B Physik (Teil B) ... 60
5. Semester ... 61
 Modul B06 Allgemeine Biologie 5 ... 61
 Modul B07 Schlüsselkompetenzen 2 - Recherchetechniken ... 66
 Modul B08/ ANG-08 Biologische Forschung ... 69
 Modul 0011 Teil Statistik .. 71
6. Semester ... 73
 Modul 09 Bachelorarbeit ... 73
1. Semester

<table>
<thead>
<tr>
<th>Modul</th>
<th>Bezeichnung</th>
<th>Art</th>
<th>SWS</th>
<th>LP</th>
<th>Prüfung</th>
<th>Benotung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001A</td>
<td>Grundlagen der Biologie</td>
<td>V</td>
<td>4</td>
<td>4</td>
<td>K1</td>
<td>ja</td>
</tr>
<tr>
<td>0001B</td>
<td>Organisation Tiere</td>
<td>V</td>
<td>3</td>
<td>3</td>
<td>K2</td>
<td>ja</td>
</tr>
<tr>
<td>0001C</td>
<td>Anatomie Pflanzen</td>
<td>V</td>
<td>2</td>
<td>2</td>
<td>K3</td>
<td>ja</td>
</tr>
<tr>
<td>0001D</td>
<td>Botanisches Anfängerpraktikum</td>
<td>P</td>
<td>4</td>
<td>5</td>
<td>K3</td>
<td>ja</td>
</tr>
<tr>
<td>0001E</td>
<td>Zoologisches Anfängerpraktikum</td>
<td>P</td>
<td>4</td>
<td>5</td>
<td>K2</td>
<td>ja</td>
</tr>
<tr>
<td>0001F</td>
<td>Tutorium Modul 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00010A</td>
<td>Vorlesung Allgemeiner Chemie</td>
<td>V</td>
<td>4</td>
<td>4</td>
<td>K4</td>
<td>ja</td>
</tr>
<tr>
<td>00010B</td>
<td>Praktikum Allgemeine Chemie</td>
<td>P</td>
<td>6</td>
<td>9</td>
<td>K4</td>
<td>ja</td>
</tr>
<tr>
<td>Summe</td>
<td>**</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Semester

<table>
<thead>
<tr>
<th>Modul</th>
<th>Bezeichnung</th>
<th>Art</th>
<th>SWS</th>
<th>LP</th>
<th>Prüfung</th>
<th>Benotung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0002A</td>
<td>Physiologie/Biochemie Pflanzen</td>
<td>V</td>
<td>2</td>
<td>2</td>
<td>K5</td>
<td>ja</td>
</tr>
<tr>
<td>0002B</td>
<td>Physiologie Tiere</td>
<td>V</td>
<td>2</td>
<td>2</td>
<td>K6</td>
<td>ja</td>
</tr>
<tr>
<td>0002C</td>
<td>Praktikum Tierphysiologie</td>
<td>P</td>
<td>3</td>
<td>6</td>
<td>K6</td>
<td>ja</td>
</tr>
<tr>
<td>0002D</td>
<td>Ökologie/Systematik Pflanzen</td>
<td>V</td>
<td>3</td>
<td>3</td>
<td>K7</td>
<td>ja</td>
</tr>
<tr>
<td>0002E</td>
<td>Ökologie/Systematik Tiere</td>
<td>V</td>
<td>2</td>
<td>2</td>
<td>K7</td>
<td>ja</td>
</tr>
<tr>
<td>0002F</td>
<td>Botanische Bestimmungsübungen</td>
<td>P</td>
<td>2</td>
<td>3</td>
<td>K7</td>
<td>ja</td>
</tr>
<tr>
<td>0002G</td>
<td>Botanische Exkursionen</td>
<td>E</td>
<td>2</td>
<td>2</td>
<td>K7</td>
<td>ja</td>
</tr>
<tr>
<td>0002H</td>
<td>Zoologische Bestimmungsübungen</td>
<td>P</td>
<td>2</td>
<td>3</td>
<td>K7</td>
<td>ja</td>
</tr>
<tr>
<td>0002I</td>
<td>Zoologische Exkursionen</td>
<td>E</td>
<td>1</td>
<td>1</td>
<td>K7</td>
<td>ja</td>
</tr>
<tr>
<td>0002J</td>
<td>Tutorium Modul 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00010C</td>
<td>Vorlesung Organische Chemie</td>
<td>V</td>
<td>3</td>
<td>3</td>
<td>K8</td>
<td>ja</td>
</tr>
<tr>
<td>00010D</td>
<td>Praktikum Organische Chemie</td>
<td>P</td>
<td>6</td>
<td>9</td>
<td>K8</td>
<td>ja</td>
</tr>
<tr>
<td>Summe</td>
<td>**</td>
<td></td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Semester

<table>
<thead>
<tr>
<th>Modul</th>
<th>Bezeichnung</th>
<th>Art</th>
<th>SWS</th>
<th>LP</th>
<th>Prüfung</th>
<th>Benotung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0003A</td>
<td>Praktikum Pflanzenphysiologie</td>
<td>P</td>
<td>4</td>
<td>6</td>
<td>K5</td>
<td>ja</td>
</tr>
<tr>
<td>0003B</td>
<td>Mikrobiologie</td>
<td>V</td>
<td>3</td>
<td>3</td>
<td>K9</td>
<td>ja</td>
</tr>
<tr>
<td>0003C</td>
<td>Genetik</td>
<td>V</td>
<td>2</td>
<td>2</td>
<td>K9</td>
<td>ja</td>
</tr>
<tr>
<td>0003D</td>
<td>Molekularbiologie</td>
<td>V</td>
<td>2</td>
<td>2</td>
<td>K9</td>
<td>ja</td>
</tr>
<tr>
<td>0003E</td>
<td>Praktikum Molekularbiologie</td>
<td>P</td>
<td>4</td>
<td>8</td>
<td>K9</td>
<td>ja</td>
</tr>
<tr>
<td>Modul</td>
<td>Bezeichnung</td>
<td>Art</td>
<td>SWS</td>
<td>LP</td>
<td>Prüfung</td>
<td>Benotung</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>0003F</td>
<td>Tutorium Modul 3</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00010E</td>
<td>Biochemie</td>
<td>V</td>
<td>2</td>
<td>2</td>
<td>K10</td>
<td>ja</td>
</tr>
<tr>
<td>00011A</td>
<td>Mathematik</td>
<td>V+Ü</td>
<td>4</td>
<td>4</td>
<td>K11</td>
<td>nein</td>
</tr>
<tr>
<td>00012A</td>
<td>Physik</td>
<td>V+Ü</td>
<td>5</td>
<td>5</td>
<td>K12</td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td>Summe</td>
<td></td>
<td>28</td>
<td>33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Semester

<table>
<thead>
<tr>
<th>Modul</th>
<th>Bezeichnung</th>
<th>Art</th>
<th>SWS</th>
<th>LP</th>
<th>Prüfung</th>
<th>Benotung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0004A</td>
<td>Biologische Methoden</td>
<td>V</td>
<td>4</td>
<td>4</td>
<td>K13</td>
<td>ja</td>
</tr>
<tr>
<td>0004B</td>
<td>Methodenpraktikum</td>
<td>P</td>
<td>12</td>
<td>18</td>
<td>K13</td>
<td>ja</td>
</tr>
<tr>
<td>0004C</td>
<td>Methodenseminar</td>
<td>S</td>
<td>2</td>
<td>3</td>
<td>K13</td>
<td>ja</td>
</tr>
<tr>
<td>0005*</td>
<td>Schlüsselkompetenzen 1</td>
<td>S+T</td>
<td>2</td>
<td>3</td>
<td>nein</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modul</th>
<th>Bezeichnung</th>
<th>Art</th>
<th>SWS</th>
<th>LP</th>
<th>Prüfung</th>
<th>Benotung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0005*</td>
<td>Schlüsselkompetenzen 1 (Präsentationstechniken)</td>
<td>S+T</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modul</th>
<th>Bezeichnung</th>
<th>Art</th>
<th>SWS</th>
<th>LP</th>
<th>Prüfung</th>
<th>Benotung</th>
</tr>
</thead>
<tbody>
<tr>
<td>00012B</td>
<td>Physik B</td>
<td>V+Ü</td>
<td>5</td>
<td>5</td>
<td>K12</td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td>Summe</td>
<td></td>
<td>26</td>
<td>33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Semester

<table>
<thead>
<tr>
<th>Modul</th>
<th>Bezeichnung</th>
<th>Art</th>
<th>SWS</th>
<th>LP</th>
<th>Prüfung</th>
<th>Benotung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0006A</td>
<td>Modellorganismen</td>
<td>V</td>
<td>3</td>
<td>3</td>
<td>K14</td>
<td>ja</td>
</tr>
<tr>
<td>0006B</td>
<td>Modellbildung in der Biologie</td>
<td>V</td>
<td>1</td>
<td>1</td>
<td>K14</td>
<td>ja</td>
</tr>
<tr>
<td>0006C</td>
<td>Seminar Konzepte der Biologie</td>
<td>S</td>
<td>2</td>
<td>3</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>0007*</td>
<td>Schlüsselkompetenzen 2</td>
<td>S+T</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modul</th>
<th>Bezeichnung</th>
<th>Art</th>
<th>SWS</th>
<th>LP</th>
<th>Prüfung</th>
<th>Benotung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0006B</td>
<td>Modellbildung in der Biologie</td>
<td>V</td>
<td>1</td>
<td>1</td>
<td>K14</td>
<td>ja</td>
</tr>
<tr>
<td>0006C</td>
<td>Seminar Konzepte der Biologie</td>
<td>S</td>
<td>2</td>
<td>3</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>0007*</td>
<td>Schlüsselkompetenzen 2</td>
<td>S+T</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0008A</td>
<td>Aspekte der biologischen Forschung</td>
<td>V</td>
<td>2</td>
<td>2</td>
<td>K15</td>
<td>ja</td>
</tr>
<tr>
<td>0008B</td>
<td>Aspekte der biologischen Forschung</td>
<td>P</td>
<td>10</td>
<td>6</td>
<td>K15</td>
<td>ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modul</th>
<th>Bezeichnung</th>
<th>Art</th>
<th>SWS</th>
<th>LP</th>
<th>Prüfung</th>
<th>Benotung</th>
</tr>
</thead>
<tbody>
<tr>
<td>00011B</td>
<td>Statistik</td>
<td>V+Ü</td>
<td>4</td>
<td>4</td>
<td>K16</td>
<td>ja</td>
</tr>
<tr>
<td>00011C</td>
<td>Übungen zur Statistik</td>
<td>Ü</td>
<td>2</td>
<td>2</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summe</td>
<td></td>
<td>26</td>
<td>24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Semester

<table>
<thead>
<tr>
<th>Modul</th>
<th>Bezeichnung</th>
<th>Art</th>
<th>SWS</th>
<th>LP</th>
<th>Prüfung</th>
<th>Benotung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor Arbeit</td>
<td></td>
<td>P</td>
<td>24</td>
<td>16</td>
<td></td>
<td>ja</td>
</tr>
<tr>
<td>Summe</td>
<td></td>
<td></td>
<td>24</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td></td>
<td>164</td>
<td>180</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* alternativ frei wählbares Angebot am HOC

V= Vorlesung; P= Praktikum; Ü=Übungen; S=Seminar; T= Tutorium
2 Studienplan der Studienrichtung Angewandte Biologie

1. Semester

<table>
<thead>
<tr>
<th>Modul</th>
<th>Bezeichnung</th>
<th>Art</th>
<th>SWS</th>
<th>ECTS</th>
<th>Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANG-01A</td>
<td>Grundlagen der Biologie</td>
<td>V</td>
<td>4</td>
<td>4</td>
<td>K1</td>
</tr>
<tr>
<td>ANG-01B</td>
<td>Anatomie der Pflanzen</td>
<td>V</td>
<td>2</td>
<td>2</td>
<td>K2</td>
</tr>
<tr>
<td>ANG-01C</td>
<td>Nutzpflanzen</td>
<td>V/Ü</td>
<td>2</td>
<td>3</td>
<td>K2</td>
</tr>
<tr>
<td>ANG-01D</td>
<td>Praktikum Nutzpflanzen</td>
<td>P</td>
<td>4</td>
<td>5</td>
<td>K2</td>
</tr>
<tr>
<td>ANG-01E</td>
<td>Organisation Tiere</td>
<td>V</td>
<td>3</td>
<td>3</td>
<td>K3</td>
</tr>
<tr>
<td>ANG-01F</td>
<td>Praktikum Zoologie</td>
<td>P</td>
<td>2</td>
<td>3</td>
<td>K3</td>
</tr>
<tr>
<td>ANG-01G</td>
<td>Tutorium zu Modul 1</td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ANG-10A</td>
<td>Allgemeine Chemie</td>
<td>V</td>
<td>4</td>
<td>4</td>
<td>K4</td>
</tr>
<tr>
<td>ANG-10B</td>
<td>Praktikum Allgemeine Chemie</td>
<td>P/Ü</td>
<td>6</td>
<td>9</td>
<td>K4</td>
</tr>
<tr>
<td></td>
<td>Summe</td>
<td></td>
<td>29</td>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>

2. Semester

<table>
<thead>
<tr>
<th>Modul</th>
<th>Bezeichnung</th>
<th>Art</th>
<th>SWS</th>
<th>ECTS</th>
<th>Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANG-02A</td>
<td>Physiologie und Biochemie der Pflanzen</td>
<td>V</td>
<td>2</td>
<td>2</td>
<td>K5</td>
</tr>
<tr>
<td>ANG-02B</td>
<td>Praktikum Grüne Biotechnologie</td>
<td>P</td>
<td>4</td>
<td>6</td>
<td>K5</td>
</tr>
<tr>
<td>ANG-02C</td>
<td>Physiologie der Tiere</td>
<td>V</td>
<td>4</td>
<td>2</td>
<td>K6</td>
</tr>
<tr>
<td>ANG-02D</td>
<td>Praktikum Tierphysiologie</td>
<td>P</td>
<td>3</td>
<td>6</td>
<td>K6</td>
</tr>
<tr>
<td>ANG-02E</td>
<td>Ökologie und Systematik der Pflanzen</td>
<td>V</td>
<td>2</td>
<td>3</td>
<td>K7</td>
</tr>
<tr>
<td>ANG-02F</td>
<td>Ökologie und Systematik der Tiere</td>
<td>V</td>
<td>2</td>
<td>3</td>
<td>K7</td>
</tr>
<tr>
<td>ANG-02G</td>
<td>Praktikum Mikroorganismen</td>
<td>P</td>
<td>4</td>
<td>4</td>
<td>K7</td>
</tr>
<tr>
<td>ANG-10C</td>
<td>Organische Chemie</td>
<td>V</td>
<td>3</td>
<td>3</td>
<td>K8</td>
</tr>
<tr>
<td>ANG-10D</td>
<td>Praktikum Organik</td>
<td>P/Ü</td>
<td>6</td>
<td>9</td>
<td>K8</td>
</tr>
<tr>
<td></td>
<td>Summe</td>
<td></td>
<td>26</td>
<td>38</td>
<td></td>
</tr>
</tbody>
</table>

3. Semester

<table>
<thead>
<tr>
<th>Modul</th>
<th>Bezeichnung</th>
<th>Art</th>
<th>SWS</th>
<th>ECTS</th>
<th>Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANG-03A</td>
<td>Mikrobiologie</td>
<td>V</td>
<td>3</td>
<td>2</td>
<td>K9</td>
</tr>
<tr>
<td>ANG-03B</td>
<td>Genetik</td>
<td>V</td>
<td>2</td>
<td>2</td>
<td>K9</td>
</tr>
<tr>
<td>ANG-03C</td>
<td>Molekularbiologie</td>
<td>V</td>
<td>2</td>
<td>2</td>
<td>K9</td>
</tr>
<tr>
<td>ANG-03D</td>
<td>Enzymtechnik</td>
<td>V</td>
<td>3</td>
<td>3</td>
<td>K9</td>
</tr>
<tr>
<td>ANG-03E</td>
<td>Praktikum Molekularbiologie</td>
<td>P</td>
<td>4</td>
<td>8</td>
<td>K9</td>
</tr>
<tr>
<td>ANG-03F</td>
<td>Praktikum Technische Biologie</td>
<td>P</td>
<td>2</td>
<td>4</td>
<td>K9</td>
</tr>
<tr>
<td>ANG-11A</td>
<td>Grundlagen der Quantitativen Biologie /</td>
<td>V/Ü</td>
<td>4</td>
<td>4</td>
<td>K10</td>
</tr>
<tr>
<td></td>
<td>Mathematik 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANG-12A</td>
<td>Physik A</td>
<td>V/Ü</td>
<td>5</td>
<td>5</td>
<td>K13</td>
</tr>
<tr>
<td></td>
<td>Summe</td>
<td></td>
<td>25</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
4. Semester

<table>
<thead>
<tr>
<th>Modul</th>
<th>Bezeichnung</th>
<th>Art</th>
<th>SWS</th>
<th>ECTS</th>
<th>Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANG-04A</td>
<td>Biologische Methoden</td>
<td>V</td>
<td>4</td>
<td>4</td>
<td>K11</td>
</tr>
<tr>
<td>ANG-04B</td>
<td>Methodenpraktikum</td>
<td>P</td>
<td>12</td>
<td>18</td>
<td>K11</td>
</tr>
<tr>
<td>ANG-04C</td>
<td>Methodenseminar</td>
<td>S</td>
<td>2</td>
<td>3</td>
<td>K11</td>
</tr>
<tr>
<td>ANG-05*</td>
<td>Schlüsselkompetenzen 1 (Präsentationstechniken)</td>
<td>S/T</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ANG-11B</td>
<td>Quantitative Biologie und Modellierung</td>
<td>V/Ü</td>
<td>4</td>
<td>4</td>
<td>K12</td>
</tr>
<tr>
<td>ANG-12B</td>
<td>Physik B</td>
<td>V/Ü</td>
<td>5</td>
<td>5</td>
<td>K13</td>
</tr>
</tbody>
</table>

Summe: 29

5. Semester

<table>
<thead>
<tr>
<th>Modul</th>
<th>Bezeichnung</th>
<th>Art</th>
<th>SWS</th>
<th>ECTS</th>
<th>Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANG-06A</td>
<td>Bioverfahrenstechnik</td>
<td>V</td>
<td>2</td>
<td>2</td>
<td>K15</td>
</tr>
<tr>
<td>ANG-06B</td>
<td>Konzepte der Modernen Biologie</td>
<td>S</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ANG-07</td>
<td>Biotechnologie und Gesellschaft</td>
<td>V/S</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ANG-08A</td>
<td>Moderne Aspekte der Angewandten Biologie</td>
<td>V</td>
<td>2</td>
<td>2</td>
<td>K15</td>
</tr>
<tr>
<td>ANG-08B</td>
<td>Betriebspraktikum</td>
<td>P</td>
<td>10</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ANG-11C</td>
<td>Statistik</td>
<td>V/Ü</td>
<td>4</td>
<td>4</td>
<td>K14</td>
</tr>
<tr>
<td>ANG-11D</td>
<td>Übungen zur Statistik</td>
<td>Ü</td>
<td>2</td>
<td>2</td>
<td>K13</td>
</tr>
</tbody>
</table>

Summe: 25

6. Semester

<table>
<thead>
<tr>
<th>Bachelorarbeit</th>
<th>(überwiegend in Betrieben)</th>
<th>SWS</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summe</td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Summe gesamt: 158

*alternativ frei wählbares Angebot am HOC

V = Vorlesung; P = Praktikum; Ü=Übungen; S=Seminar; T = Tutorium
3 Nützliches und Informatives

Das Modulhandbuch
• die Zusammensetzung der Module,
• die Größe der Module (in LP),
• die Abhängigkeiten der Module untereinander,
• die Lernziele der Module,
• die Art der Erfolgskontrolle und
• die Bildung der Note eines Moduls.

Es gibt somit die notwendige Orientierung und ist ein hilfreicher Begleiter im Studium. Das Modulhandbuch ersetzt aber nicht das Vorlesungsverzeichnis und die zentralen Internetseiten der Biologielehre sowie die Internetseiten und Aushänge der Institute, die aktuell zu jedem Semester über die variablen Veranstaltungsdaten (z.B. Zeit und Ort der Lehrveranstaltung) sowie ggf. kurzfristige Änderungen informieren.

Beginn und Abschluss eines Moduls

Gesamt- oder Teilprüfungen
• Prüfung an-/abmelden
• Prüfungsergebnisse abfragen
• Notenauszüge erstellen
Genauere Informationen zur Selbstbedienungsfunktion finden sich unter http://www.zvw.uni-karlsruhe.de/download/leitfaden_studierende.pdf

Wiederholung von Prüfungen
1. Eine nicht bestandene schriftliche Prüfung kann einmal wiederholt werden. Wenn man diese Wiederholung auch nicht besteht, gibt es eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der
nicht bestandenen Prüfung. Diese mündliche Nachprüfung hat als Ergebnis entweder ein "bestanden" (4.0) oder ein "nicht bestanden" (5.0).

2. Wenn man die Nachprüfung auch nicht besteht, wird man eigentlich exmatrikuliert und verliert den Prüfungsanspruch. Hier gibt es jedoch noch eine letzte Chance: man kann einen Antrag an den Prüfungsausschuss (Studiendekan) stellen, eine letzte mündliche Prüfung (sogenannte Zweitwiederholung) abzuhalten. Auch bei dieser letzten mündlichen Prüfung gibt es als Ergebnis entweder ein "bestanden" (4.0) oder ein "nicht bestanden" (5.0). Wenn man hier nicht besteht, verliert man endgültig den Prüfungsanspruch und wird exmatrikuliert. Achtung: diese Zweitwiederholung ist für die Orientierungsprüfung nicht möglich.

Zu beachten: Wer sich zu einer Erstprüfung erst gar nicht anmeldet, kann auch nicht an der Wiederholungsprüfung teilnehmen, sondern muss warten, bis diese Prüfung das nächste Mal wieder angeboten ist (in der Regel also bis zum Folgejahr).

Zusatzleistungen

Alles ganz genau ...
Alle Informationen rund um die rechtlichen und amtlichen Rahmenbedingungen des Studiums finden sich in der Studien- und Prüfungsordnung des Studiengangs

Verwendete Abkürzungen
LP Leistungspunkte/ECTS
LV Lehrveranstaltung
P Praktikum
S Seminar
SS Sommersemester
Sem. Semester
SPO Studien- und Prüfungsordnung
SQ Schlüsselqualifikationen
SWS Semesterwochenstunde
T Tutorium
Ü Übung
V Vorlesung
WS Wintersemester
4. Module

Qualifikationsziele Bachelor Biologie

Fähigkeiten

- selbstständigen Denken und Arbeiten
- Analysieren und kritischen Hinterfragen von Sachverhalten und Hintergründen
- Vernetztes Denken auf verschiedenen System- und Komplexitätsebenen und Erkennen von Verbindungen zwischen Teilgebieten der Biologie
- Arbeiten im Team
- Publikumsorientiertes Präsentieren wissenschaftlicher Inhalte
- Sicherer Umgang mit Fachsprache (auch international)
- Erschließen von Informationsquellen und deren gezielter und kritische Nutzung
- Sensibilität für nachhaltigen Umgang mit der Natur
- Bewertung naturwissenschaftlicher Erkenntnisse im gesellschaftlichen Kontext

Generelle Ziele für alle Studiengänge und -richtungen der Biologie sind also

- Wissenschaftlichkeit
- Forschungsortientierung
- Überfachliche Kompetenzen
- Eigenständigkeit
- Nachhaltigkeit

Das sind genau die Ziele, die auch im KIT-Leitbild niedergelegt sind. Für den Studiengang Bachelor Biologie ergeben sich daraus folgende Qualifikationsziele:

Darüber hinaus haben sie sich folgende überfachliche Qualifikationen erworben:

- Sie haben gelernt, selbstständig denken und arbeiten
- Sie haben gelernt, Sachverhalte und Hintergründe analysieren und kritisch hinterfragen
- Sie haben gelernt, auf verschiedenen System- und Komplexitätsebenen vernetzt denken und Verbindungen zwischen Teilgebieten der Biologie zu erkennen
- Sie haben gelernt und geübt, Informationsquellen gezielt und kritisch erschließen und bewerten
- Sie haben sich die biologische Fachsprache auf Deutsch und Englisch angeeignet
- Sie haben Sensibilität für einen nachhaltigen Umgang mit der Natur entwickelt
- Sie haben gelernt, naturwissenschaftliche Erkenntnisse im gesellschaftlichen Kontext bewerten
Im Folgenden sind diese Qualifikationsziele auf die einzelnen Phasen des Bachelorstudiums heruntergebrochen:

Semester 1+2
Übergeordnete Qualifikationsziele für diese Studienphase
- Sie verstehen die Ursachen von Biodiversität, die Grundzüge ökologischer Zusammenhänge und der Taxonomie und können Biodiversität erkennen und methodisch analysieren.
- Sie verstehen die Grundgesetzlichkeiten der funktionellen Organisation von Pflanzen und Tieren. Sie lernen die Grundzüge der Allgemeinen, der Anorganischen und der Organischen Chemie kennen.

Semester 3+4
Übergeordnete Qualifikationsziele für diese Studienphase
- Die Studierenden durchdringen die molekularen Grundlagen des Lebens (Mikrobiologie, Genetik, Molekularbiologie).
- Die Studierenden erwerben sich ein Grundrepertoir an modernen biologischen Methoden und können dies nicht nur praktisch einsetzen, sondern auch kritisch bewerten.
- Die Studierenden erwerben sich Grundkenntnisse in Mathematik, Physik und Biochemie
- Die Studierenden lernen und üben Präsentationstechniken als wichtige Schlüsselqualifikation

Semester 5+6
Übergeordnete Qualifikationsziele für diese Studienphase
- Die Studierenden lernen und üben, die Biologie konzeptionell zu durchdringen
- Die Studierenden lernen, biologische Phänomene vernetzt zu betrachten
- Die Studierenden lernen, die Prinzipien wissenschaftlichen Arbeitens bewusst anzuwenden
- Die Studierenden lernen, biologische Forschung im gesellschaftlichen Kontext zu sehen und hinsichtlich ihrer ethischen Aspekte zu beurteilen
- Die Studierenden lernen problemorientierte Forschungsansätze zu entwickeln
- Die Studierenden lernen und üben, sich gezielt relevante Information zu erwerben
- Die Studierenden lernen und üben, selbständig ein wissenschaftliches Projekt durchzuführen, auszuwerten und zu dokumentieren
- Die Studierenden lernen die Grundzüge der Statistik und ihre Anwendung auf konkrete Fragestellungen der Biologie
1. Semester

Modul B01 Allgemeine Biologie

Qualifikationsziele Modul B01

Die Studierenden können folgende biologischen Grundlagen nachvollziehen und diese auf einer einfachen Ebene miteinander in Beziehung setzen, um grundlegende Phänomene der Biologie zu erklären:

- Molekulare und zellulären Grundlagen des Lebens
- Mechanismen und Gesetze der Vererbung
- Mechanismen der Evolution
- Organisationsmerkmale verschiedener Tiergruppen und deren Zusammenhang mit Evolution, Funktion und Entwicklung
- Strukturen und Funktionen pflanzlicher Zellen, Gewebe und Organe und deren Zusammenhang mit Evolution und Entwicklung

Modulteile

- 0001A/ ANG 01A: Grundlagen der Biologie (Vorlesung)
- 0001B/ ANG 01E: Organisationsformen des Tierreichs (Vorlesung)
- 0001C/ ANG 01B: Einführung in die Anatomie der Pflanzen (Vorlesung)
- 0001D /ANG 01F: Zoologische Anfängerübungen (Übungen)
- 0001E: Botanisches Anfängerpraktikum (Praktikum)
- ANG 01C: Nutzpflanzen Vorlesung
- ANG 01D: Nutzpflanzen Praktikum
- 0001F /ANG 01 G: Tutorium zum Modul Allgemeine Biologie 1
Modul 0001A / ANG 01A Grundlagen der Biologie (Vorlesung)

Qualifikationsziele zum Modul 0001A
Die Studierenden verschaffen sich einen Überblick über die allgemeinen chemischen und biologischen Grundlagen des Lebens. Dies umfasst

- "Die Moleküle des Lebens": DNS, RNS, Proteine, andere Makromoleküle
- Grundlagen der Zellbiologie
- Zelluläre Besonderheiten von Pflanzen, Tieren und Pilzen
- Einführung in die klassische Genetik
- Einführung in die molekulare Genetik
- Prinzipien der Evolution
- Evolution von Pflanzen, Tieren und Menschen

Anmeldung: zur Teilnahme keine Anmeldung notwendig
Plätze: 200
Sprache: Deutsch
Lehrform: Vorlesung 80 %, Übungsfragen 20 %
Leistungsnachweis: Zweistündige Klausur, Bonuspunkte aus Übungsblättern und Hausarbeiten gehen im Falle des Bestehens in das Klausurergebnis mit ein.

Klausur: Man muss sich elektronisch anmelden (dies gilt auch für die Studienrichtung Angewandte Biologie und die Studiengänge Chemische Biologie und Lehramt Biologie) Achtung: diese Klausur ist Teil der Orientierungsprüfung und kann daher nur einmal wiederholt werden!

Materialien
- Purves, Sadava, Orians, Heller - Biologie (in der Lehrbuchsamm- lung, Lesesaal Naturwissenschaften unter 2006 A 5765(7))
- Campbell, Reece, Markl - Biologie (in der Lehrbuchsammlung, Lesesaal Naturwissenschaften unter 97 E 322(6,N))
- Weitere Lehrbücher werden in den einführenden Vorlesungsstun- den vorgestellt.
- Tutorium (für Studierende NwT, aber auch für andere geöffnet)
Modul 0001B / ANG 1E Organisationsformen der Tierreichs

Lehrende: Bastmeyer, Bentrop, Weth

Dauer: 3 SWS
Zyklus: WS
LP: 3

Anmeldung: zur Teilnahme keine Anmeldung notwendig
Plätze: 100
Sprache: Deutsch
Lehrform: Vorlesung 100%

Klausur: Man muss sich elektronisch anmelden (dies gilt auch für die Studienrichtung Angewandte Biologie und Lehramt Biologie). Achtung: diese Klausur ist Teil der Orientierungsprüfung und kann daher nur einmal wiederholt werden!

Zum Bestehen der Prüfung müssen 50 % der Punkte in der Klausur erreicht werden. Dann werden die im Kurs erworbenen Bonuspunkte bei der Notenbildung berücksichtigt.

Inhalte
- Nomenklatur, Taxonomie, Artbegriffe, Evolution
- Übersicht über Organisation und Leistungen tierischer Zellen, Kern- und Zellteilung, Fortpflanzung
- Abwandlungen des Bauplans von Zellen: Zellorganellen, Organisationsmerkmale von Einzellern
- Vielzeller: Evolution, Zellkolonien
- Diploblastische Tiere: Cnidarier, Polymorphismus, Generationswechsel
- Triploblastische Tiere: Plathelminthen, Entwicklungszyklen von Parasiten
- Nemathelminthen, Schwerpunkt Nematoden, Entwicklung des Bauplans von *Caenorhabditis*
- Anneliden, coelomatische Organisation
- Mollusken, Spiralfurchung
- Grundbauplan der Arthropoden am Beispiel der Crustaceen und der Insekten
- Chordaten, Baupläne und Evolution, Acrania
- Wirbeltiere: Beispielhafte Analyse der Baupläne von Knochenfischen und Säugetieren, Gewebetypen.

Materialien
- Lehrbücher der Zoologie, z.B.:
 Zoologie (Hickman et al.) Pearson Studium, 13. Auflage
 Zoologie (Wehner, Gehring) Thieme Verlag, 24. Auflage
 Spezielle Zoologie (Rieger, Westheide) Spektrum Akademischer Verlag, 2. Auflage
 Systematische Zoologie (Storch, Welsch) Spektrum Akademischer Verlag, 6. Auflage
- Internetmaterialien
Modul 0001C / ANG 01B Einführung in die Anatomie der Pflanzen

Lehrende: Seyfried
Dauer: 2 SWS
Zyklus: WS
LP: 2

Anmeldung: zur Teilnahme keine Anmeldung notwendig
Plätze: 170
Sprache: Deutsch
Lehrform: Vorlesung 70 %, Übungsfragen 20 %, Gruppenarbeit 10 %

Klausur: Zwei- stündige Klausur zu 0001C+E, Bonuspunkte aus Übungsblättern und Hausarbeiten gehen in das Klausurergebnis mit ein. Man muss sich elektronisch anmelden (dies gilt auch für die Studienrichtung Angewandte Biologie und die Studiengänge Chemische Biologie und Lehramt Biologie) Achtung: diese Klausur ist Teil der Orientierungsprüfung und kann daher nur einmal wiederholt werden!

Inhalte

- Überblick über die Systematik von Prokaryoten, Pilzen und Pflanzen
- Einführung in den Aufbau und die Besonderheiten der Pflanzenzelle
- Aufbau des Kormus; Gewebetypen in Pflanzen
- Wachstum von Pflanzen; Scheitelzellen, Apikalmeristeme
- Aufbau der Wurzel
- Primärer Spross
- Sekundäres Dickenwachstum
- Aufbau des Blattes; Trichome und Emergenzen; Spaltöffnungsapparat; funktionelle Anpassungen;
- Abschlussgewebe
- Metamorphosen
- Grundlagen der Fortpflanzungsbiologie von Pflanzen
- Blüte, Samen, Früchte

Materialien

- Internetmaterialien
Modul 0001D / ANG 1F Zoologisches Anfängerpraktikum

Lehrende: Bastmeyer, Bentrop, Petney, Weth
Dauer: 4 SWS (0001D) / 2 SWS (ANG 01F)
LP: 6 /3 (ANG 01F)
Zyklus: WS

Anmeldung: Über das elektronische Studienportal

Plätze: 100 (0001D) / 30 (ANG-01F)
Sprache: Deutsch
Lehrform: Praktikum 90 %, Gruppenarbeit (Protokollierung) 10 %

Klausur: Man muss sich elektronisch anmelden (dies gilt auch für die Studienrichtung Angewandte Biologie und Lehramt Biologie) Achtung: diese Klausur ist Teil der Orientierungsprüfung und kann daher nur einmal wiederholt werden! Zum Bestehen der Prüfung müssen 50 % der Punkte in der Klausur erreicht werden. Dann werden die im Kurs erworbenen Bonuspunkte bei der Notenbildung berücksichtigt.
Modul 0001E Botanisches Anfängerpraktikum

Lehrende: Seyfried, Lamparter

Dauer: 4 SWS
Zyklus: jedes WS
im Wechsel mit 0001D (Zoologisches Anfängerpraktikum)
LP: 6

Anmeldung: Über das elektronische Vorlesungsverzeichnis. Vorbesprechung (mit Verteilung der Praktikumsplätze) für Modul 0001 jeweils unmittelbar vor Beginn der Vorlesungszeit
Plätze: 100
Sprache: Deutsch
Lehrform: Praktikum 90 %, Gruppenarbeit (Protokollierung) 10 %

Klausur: Man muss sich elektronisch anmelden (dies gilt auch für Lehramt Biologie) Achtung: diese Klausur ist Teil der Orientierungsprüfung und kann daher nur einmal wiederholt werden!

Inhalte

• Mikroskopie
• Evolution und Bau der pflanzlichen Zelle, pflanzliche Gewebe
• Bau und Entwicklung von Moosen, Farnen, Samenpflanzen
• Apikalmeristeme in Wurzel und Spross
• primärer Spross bei monokotylen und dikotylen Pflanzen
• primäre Wurzel bei monokotylen und dikotylen Pflanzen
• Blatt, Spaltöffnungen, Haare, Emergenzen
• sekundärer Spross bei Gymnospermen und Angiospermen
• Metamorphosen
• Blüte, Samen, Frucht*

Materialien

• Skript und Lehrbücher siehe Vorlesung (0001C)
• außerdem verschiedene Praktikumsbücher der Botanik; z. B. Nultsch; Wanner; Braune/Lehmann/Taubert
 (Vorstellung im Kurs)
• Internetmaterialien
Modul ANG 01C Nutzpflanzen Vorlesung (nur Studienrichtung Angewandte Biologie)

Lehrende: Nick
Dauer: 2 SWS
Zyklus: jedes WS, Teil "Einführung in die Botanik der Nutzpflanzen" und Teil "Angewandte Botanik"
LP: 3
Anmeldung: zur Teilnahme keine Anmeldung notwendig
Plätze: 100
Sprache: Deutsch
Lehrform: Vorlesung 80 %, Übung/Seminar 20 %
Leistungsnachweis: Zweistündige Klausur zu den Inhalten von Modulen ANG-01B, ANG-01C und ANG-01D, Bonuspunkte aus Praktikumsleistung und Präsentationen gehen mit 20 % in das Klausurergebnis mit ein.

Inhalte

- Überblick über die Ziele und Methoden der Nutzpflanzen-Botanik
- Speicherstoffe und Energiepflanzen
- Sekundäre Pflanzenstoffe und deren Nutzung
- Grüne Gentechnik
- Evolution, Biodiversität und Globalisierung der Nutzpflanzen
- Zellbiologie der Nutzpflanzen
- Histologie der Nutzpflanzen
- Anatomie der Nutzpflanzen
- Wichtige Nutzpflanzengruppen
- Tropische Nutzpflanzen

Materialien

- Nultsch / Grahle: Mikroskopisch-Botanisches Praktikum für Anfänger (Thieme Verlag)
- Lütge / Kluge / Bauer: Botanik (Wiley Verlag)
- Internetmaterialien zum Teil "Einführung in die Botanik der Nutzpflanzen"
- Internetmaterialien zum Teil "Angewandte Botanik"
- Tutorium "Nutzpflanzen", Mo 11:30-12:15, HS Botanik 1, Gbd. 10.40
- Glossar zum Modul Nutzpflanzen
Modul ANG 01D Nutzpflanzen Praktikum (nur Studienrichtung Angewandte Biologie)

Lehrende: Zaban
Dauer: 4 SWS
Zyklus: jedes WS

Anmeldung:

Die Teilnahme am Nutzplanzen-Praktikum ist gleichzeitig die Zulassung zur Studienrichtung "angewandte Biologie".
Es werden insgesamt 30 Studierende zur Studienrichtung "Angewandte Biologie" zugelassen.
Wenn Sie "angewandte Biologie" studieren möchten sollten sich hierfür anmelden

Anmerkung für Studierende, die ihre Studienrichtung ändern wollen: Die Prüfungen Botanik und Zoologie (K2 und K3) der Studienrichtung Angewandte Biologie werden auf Antrag beim Studiendekan als gleichwertig den entsprechenden Prüfungen Allgemeine Biologie anerkannt und umgekehrt - vorbehaltlich der Verfügbarkeit freier Plätze in der jeweils anderen Studienrichtung.

Plätze: 30
Sprache: Deutsch
Lehrform: Praktikum 100 %

Klausur: Man muss sich elektronisch anmelden. Achtung: diese Klausur ist Teil der Orientierungsprüfung und kann daher nur einmal wiederholt werden!
Modul 0001F/ANG 01G Tutorium zu Modul 1

Lehrende: Studierende der höheren Semester
Dauer: 3 x 1 SWS
LP: 3
Zyklus: jedes WS
Botanisches Anfängerpraktikum (0001E), Mo und Fr
Zoologischen Anfängerübungen (0001D), Mo
Grundlagen der Biologie (für NwT), Do
Nutzpflanzen (für Angewandte Biologie und Lebensmittelchemie), Mo

Anmeldung: über Listen bei der Vorbesprechung für Modul 0001
Plätze: 20 je Tutorium in parallelen Gruppen
Sprache: Deutsch
Lehrform: Gruppenarbeit 100 %
Leistungsnachweis: Bearbeitete Übungen (für Teilmodule 0001A-0001C)

Inhalte

Der Stoff von Vorlesungen und Praktika (Teilmodule 0001A-0001C, ANG 01A-01E) wird anhand von gemeinsam in Gruppen zu bearbeitenden Übungsfragen vertieft.

Materialien

- siehe Teilmodule 0001A-0001E
- siehe Teilmodule ANG-01A-01E
Modul B10 Chemie (Anorganik)

Angebot für Studierende, die in der Oberstufe kein oder nur wenig Chemie belegt haben: es gibt die Möglichkeit, über ein entsprechendes Propädeutikum des Fernstudienzentrums entsprechende Lücken zu füllen

Qualifikationsziele Modul 10 (Teile Allgemeine Chemie / Organische Chemie)

Die Studierenden erwerben sich theoretische und praktische Grundkenntnisse der Chemie

- Sie können mit Gefahrstoffen und Laborgeräten sicher umgehen
- Sie können grundsätzliche Labortechniken (Wägen, Messen, Kalibrieren) anwenden
- Sie können chemisch rechnen
- Sie kennen die Grund-Eigenschaften wichtiger Elemente und Ionen
- Sie verstehen die Grundlagen qualitativer und quantitativer Analytik
- Sie verstehen Bindung, Struktur und Systematik organischer Verbindungen
- Sie kennen Struktur und Funktion wichtiger organischer Stoffklassen
- Sie können grundsätzliche Reaktionen der organischen Synthese verstehen und durchführen
- Sie kennen die wichtigsten Methoden der Biochemie
- Sie verstehen die Gesetzmäßigkeiten in Struktur und Funktion von Proteinen und Lipiden
- Sie verstehen die chemischen Grundlagen für Biomembranen und Transport
- Sie kennen die Prinzipien wichtiger Stoffwechselwege
Modul 0010A /ANG 10A Allgemeine und Anorganische Chemie

Lehrende Feldmann, Roesky, Powell
Dauer 4 SWS
Zyklus jedes WS
LP 4

Anmeldung zur Teilnahme keine Anmeldung notwendig
Plätze 100
Sprache Deutsch
Lehrform Vorlesung 100 %

Inhalte

- Aufbau der Materie, Atommodelle
- Periodensystem der Elemente
- Einführung in die Chemische Bindung
- Metalle
- Ionenkristalle
- Kovalente Verbindungen
- Chemische Reaktionen
- Chemisches Gleichgewicht und Massenwirkungsgesetz
- Säuren und Basen
- Komplexverbindungen
- Heterogene Gleichgewichte, Phasengleichgewichte, Fällungsreaktionen
- Redoxreaktionen
- Chemie der Elemente

Materialien

- Mortimer, Müller – Chemie, Thieme Verlag (aktuelle Auflage)
- Riedel – Moderne Anorganische Chemie, de Gruyter (aktuelle Auflage)
- Hollemann, Wiberg – Lehrbuch der Anorganischen Chemie, de Gruyter (aktuelle Auflage)
- Jander, Blasius – Lehrbuch der analytischen und präparativen anorganischen Chemie
- Hirzel (aktuelle Auflage)
Modul 0010B /ANG 10B Anorganisch-Chemisches Praktikum

Lehrende Feldmann, Goesmann, Powell
Dauer 6 SWS (Biologie)
Zyklus jedes WS, als Block von 6 Wochen in der Zeit November bis Weihnachten

Studienrichtung Biologie: Di, Mi, Do
Studienrichtung Angewandte Biologie: Mo, Do, Fr
Studiengang Chemische Biologie: Mo, Di, Do

Seminar zum Praktikum: ab Beginn WS bis Weihnachten

LP 9 (Biologie)

Plätze 100
Sprache Deutsch
Lehrform Praktikum 80 %, Seminar 20 %

Inhalte

• Gefahren und Arbeitsschutz
• Einfache chemische Arbeitstechniken
• Durchführung chemischer Analysen
• Chemisches Gleichgewicht in wässriger Lösung
• Säure-Base-Gleichgewichte
• Massenwirkungsgesetz und Löslichkeitsprodukt
• Reaktionen und Nachweise von Anionen und Kationen
• Analyse und Trennung von Kationen
• Maßanalytische Verfahren
• Säure-Base-Titrationen
• Fällungstitrationen
• Komplexbildungsreaktionen
• Redoxreaktionen und elektrochemische Grundbegriffe

Materialien

• Seminar zum Anorganisch-Chemischen Praktikum
• Praktikumsskript
• Jander-Blasius, Einführung in das anorganisch-chemische Praktikum, S. Hirzel Verlag Stuttgart, neueste Auflage
• Internetressourcen
2. Semester

Modul B02 Allgemeine Biologie 2

Das Modul Allgemeine Biologie 2 führt die Mechanismen und Gesetzmäßigkeiten, die im Modul B01 vermittelt wurden, auf der Ebene des Organismus (Physiologie, Biochemie und Entwicklungsbiologie) und dann, darüber hinaus, auf der Ebene von Organismengemeinschaften, sprich Ökosystemen (Biodiversität, Ökologie) zusammen. Hier geht es auch darum, sich einen Überblick über die Vielfalt der Lebensformen zu verschaffen und Formkenntnisse zu erwerben.

Qualifikationsziele Modul B02

Die Studierenden entwickeln ein Verständnis für die dynamische Funktion von Organismen und das Zusammenwirken von Organismen in ökologischen Systemen. Sie sind in der Lage, die Biodiversität von Pflanzen und Tieren zu erkennen und richtig einzuordnen. Sie können folgende Gebiete der Biologie verstehen und die Phänomene auf funktioneller Ebene miteinander in Beziehung zu setzen:

- Tierphysiologie, Funktion tierischer Organe und Besonderheiten des tierischen Stoffwechsels
- Physiologie der Pflanzen, Besonderheiten des pflanzlichen Stoffwechsels, transgene Pflanzen
- Systematik von Pflanzen und Tiere
- Zusammenhang zwischen Morphologie und Lebensweise
- Grundgesetzmäßigkeiten der Ökologie

Damit verknüpft sind sie in der Lage

- Die Grundlagen taxonomischer Methoden zu verstehen
- Einfache Stammbäume eigenständig zu entwickeln
- Mit Bestimmungsschlüsseln geläufig umzugehen
- Die wichtigsten Familien von Pflanzen und Tieren erkennen und zuordnen zu können
- Typische Biotope der Region zu erkennen
- Am Beispiel dieser Biotope ökologische Zusammenhänge vernetzt darstellen zu können

Modulteile:

- 0002A /ANG 02A Physiologie/Biochemie Pflanzen
- 0002B / ANG 02C Physiologie Tiere
- 0002C / ANG 02D Praktikum Tierphysiologie
- 0002D /ANG 02 E Ökologie/Systematik Pflanzen
- 0002E / ANG 02 F Ökologie/Systematik Tiere
- 0002F Botanische Bestimmungsübungen
- 0002G Botanische Exkursionen
- 0002H Zoologische Bestimmungsübungen
- 0002I Zoologische Exkursionen
- ANG 02B Praktikum Grüne Biotechnologie
- ANG 02G Praktikum Mikroorganismen
- 0002F Tutorium zu Modul 2
Modul 0002A / ANG 2A Physiologie und Biochemie der Pflanzen

Lehrende: Puchta

Dauer: 1.5 SWS
Zyklus: jedes SS
LP: 1

Anmeldung: zur Teilnahme keine Anmeldung notwendig
Plätze: 100
Sprache: Deutsch
Lehrform: Vorlesung 80 %, Übungsfragen 20 %
Leistungsnachweis:
Allgemeine Biologie: Zweistündige Klausur im WS im Verbund mit dem Praktikum (siehe Modul 0003A).
Angewandte Biologie: die Inhalte dieser Vorlesung werden gemeinsam mit dem Praktikum ANG-02B (Praktikum Grüne Biotechnologie) geprüft

Inhalte

- Grundlagen der Pflanzengenetik: Organisation der drei Genome der Pflanze, Genomvergleiche, Expression der Information
- Transgene Pflanzen: Pflanzentransformation mittels Agrobakterium, transgene Pflanzen in der Biotechnologie und Landwirtschaft
- Photosynthese: Lichtreaktion, Elektronentransportketten, Calvinzyklus, C3-C4 Pflanzen, Photorespiration, Auf- und Abbau pflanzlicher Polysaccharide
- Pflanzliche Lipide: Membranen und ihr Aufbau; Fettsäuresynthese, Triglyceride und Phospholipide, β-Oxidation, Isoprenoidstoffwechsel
- Stickstoff und Schwefelstoffwechsel: bakterielle Stickstofffixierung, Nitrat und Nitritreduktion, Sekundärstoffwechsel, Sulfat und Sulfitreduktion
- Transport und Bewegung: Mineralstoffwechsel, Wasserhaushalt, Xylem- und Phloemtransport, Erzeugung von Bewegungen
- Signaltransduktion, Hormone und Pathogene: Mechanismen der Signaltransduktion, Licht, Schwerkraft, Phytohormone und ihre Wirkung, Reaktion der Pflanze auf Pathogene und Stress

Materialien

- Allgemeine und molekulare Botanik (E. Weiler, L. Nover) Thieme 2008
- Biologie der Pflanze (Raven et al), de Gruyter 2002
- Pflanzenbiochemie (H.W. Heldt) Spektrum Akademischer Verlag 2003
- Pflanzenphysiologie (D.Heß) UTB Ulmer 2008
- Botanik (U. Lüttge et al) Wiley-VCH 2005

- Internetmaterialien
Modul 0002B / ANG 2C Tierphysiologie

Lehrende: Dietmar Gradl, Almut Köhler
Dauer: 1.5 SWS
Zyklus: jedes SS
LP: 1

Anmeldung: zur Teilnahme keine Anmeldung notwendig
Plätze: 100
Sprache: Deutsch
Lehrform: Vorlesung 80 %, Übungsfragen 20 %
Leistungsnachweis:
Allgemeine Biologie zweistündige Klausur zu 0002B und 0002C
Angewandte Biologie zweistündige Klausur zu ANG-02C und D
Chemische Biologie Prüfung über die Inhalte der Module 0002A und 0002B geprüft.

Inhalte

Die Studierenden erwerben ein grundlegendes Verständnis für die Physiologie der Tiere. Dabei stehen die Besonderheiten des tierischen Stoffwechsels sowie die Funktion tierischer Organe im Mittelpunkt.

- Sauerstofftransport und Sauerstoffverbrauch
- Kohlenhydratstoffwechsel
- Grundlagen der Enzymkinetik
- Osmoregulation und Exkretion im Tierreich
- Hormonelle Regulation
- Blutzusammensetzung, funktionale Aspekte der einzelnen Blutkomponenten
- Bau und Funktion des Säugerherzens
- Bau und Funktion der Muskeln
- Reizübertragung am Skelettmuskel
- Sinne (Bau und Funktion der Sinnesorgane)

Materialien

- Lehrbücher: Tierphysiologie (Eckert) Thieme 2003
- Tierphysiologie (Penzlin) Springer 2003
- Biologie (Campbell) Pearson 2006
- Internetmaterialien
Modul 0002C / ANG 02D Tierphysiologisches Praktikum

Lehrende: Gradl, Köhler
Dauer: 4 SWS
Zyklus: jedes SS,
LP: 6
Anmeldung: Vorbesprechung (mit Verteilung der Praktikumsplätze) für Modul 0002 kurz vor Beginn des Semesters.
Plätze: 100
Sprache: Deutsch
Lehrform: Praktikum 100 %
Leistungsnachweis:
Allgemeine Biologie zweistündige Klausur zu 0002B und 0002C
Angewandte Biologie zweistündige Klausur zu ANG-02C und D
Chemische Biologie Prüfung über die Inhalte der Module 0002A und 0002B geprüft.

Inhalte

- Grundkenntnisse physiologischer und biochemischer Experimente
- Tierextrakte
- Tierorgane oder lebende Tiere
- gängige Messtechniken mit Laborgeräten (Zentrifugen, Spektrometern, Osmometer, Mikroskop) Umgang mit Gefahrstoffen (Sicherheit, Umweltverträglichkeit, Wirtschaftlichkeit

Materialien

- Praktikumsskript
- Internetmaterialien
Modul 0002D / ANG 02E Ökologie und Systematik der Pflanzen

Lehrende: Seyfried
Dauer: 3 SWS
Zyklus: jedes SS,
LP: 3
Anmeldung: Studienportal
Plätze: 100
Sprache: Deutsch
Lehrform: Vorlesung 70 %, Übungsfragen 15 %, Gruppenarbeit 15 %
Leistungsnachweis: Zweistündige Klausur

Leistungsnachweis:
Allgemeine Biologie: Zweistündige Klausur 0002D-0002I, mit Praxisanteil (Bestimmung von Arten der heimischen Flora), Leistungen aus den Praktika und Exkursionen (0002F-I) gelten als Prüfungsvorleistung für die Teilnahme an der Klausur.
Lehramt NwT: eigene Version der Klausur zu den Inhalten der Vorlesung 0002D.

Inhalte
- Artbegriff; Arbeitsweisen bei der Klassifikation, Taxonomie, Systematik
- Phylogenie, Systematik und Fortpflanzungsbiologie von Prokaryoten, Algen, Moosen, Pilzen, Farnpflanzen und Nacktsamern
- Biologie und Systematik von ausgewählten Familien der Angiospermen
- Populationsbiologie
- Ökologie und Ökosysteme, Interaktionen, Landschaften

Materialien
- Botanischer Garten der Universität
- Internetmaterialien im ILIAS
Modul 0002E/ ANG 02F Ökologie und Systematik der Tiere

Lehrende: Taraschewski, Petney
Dauer: 2 SWS
Zyklus: jedes SS, Di 09:45 - 11:15
LP: 3
Anmeldung: Für die Vorlesung keine Anmeldung notwendig.
Plätze: 100
Sprache: Deutsch
Lehrform: Vorlesung 70 %, Übungsfragen 15 %, Gruppenarbeit 15 %

Leistungsnachweis:
Allgemeine Biologie: Zweistündige Klausur 0002D-0002I, mit Praxisanteil (Bestimmung von Arten der heimischen Flora), Leistungen aus den Praktika und Exkursionen (0002F-I) gelten als Prüfungsvorleistung für die Teilnahme an der Klausur.
Lehramt NwT: eigene Version der Klausur zu den Inhalten der Vorlesung 0002D.

Inhalte
Überblick über die Morphologie, Systematik und Lebensweise von
• Mollusken;
• ausgewählten Arthropodenklassen;
• ausgewählten Insektenordnungen;
• ausgewählten Insektenlarven;
• Rynchoten;
• Coleopteren;
• Dipteren;
• Hymenopteren;
• Myriopoden;
• Crustaceen;
• Cheliceraten;
• Pisces;
• Mammalia

Materialien
• M. Schaefer: Brohmer - Fauna von Deutschland, Quelle & Meyer, neueste Auflage
• Spezielle Zoologie (R.M. Rieger, W. Westheide), Spektrum, Akademischer Verlag, 2003/2004
• Internetmaterialien
Modul 0002F Botanische Bestimmungsübungen

Lehrende: Seyfried
Dauer: 2 SWS
Zyklus: jedes SS,
LP: 3
Anmeldung: Vorbesprechung (mit Verteilung der Praktikumsplätze) für Modul 0002 kurz vor Beginn des Semester.
Plätze: 100
Sprache: Deutsch
Lehrform: Praktikum 100 %
Leistungsnachweis: Allgemeine Biologie: Zweistündige Klausur 0002D-0002I, mit Praxisanteil (Bestimmung von Arten der heimischen Flora), Leistungen aus den Praktika und Exkursionen (0002F-I) gelten als Prüfungsvorleistung für die Teilnahme an der Klausur.

Inhalte
- Umgang mit Bestimmungsschlüsseln
- bestimmungsrelevante Merkmale von Pflanzen
- Bestimmen von Arten aus den wichtigsten Familien der einheimischen Flora (Farne, Nacktsamer, Be- decktsamer)
- wesentliche Charakteristika der wichtigsten Familien

Materialien
- Lehrbücher der Botanik, z. B. „Strasburger“ (aktuelle Auflage)
- wissenschaftliches Bestimmungsbuch z. B. Schmeil/Fitschen, Oberdorfer, Rothmaler, u.a.
- Lüder, Grundkurs Pflanzenbestimmung (nur zur Ergänzung geeignet)
- Botanischer Garten der Universität
- Grundinformationen im Internet
Modul 0002G Botanische Geländepraktika

Lehrende: Seyfried
Dauer: 2 SWS
Zyklus: jedes SS, n.V., 6 halbtägige Exkursionen (für Lehramt 3) nachmittags, abends oder Samstag
LP: 2
Ort: Karlsruhe und Umgebung
Anmeldung: Bei Max Seyfried, Gbd. 10.40, 1. OG, Verteilung der Exkursionsplätze in den Bestimmungsübungen 0002F
Plätze: 120
Sprache: Deutsch
Lehrform: Exkursion 100 %
Leistungsnachweis:
Allgemeine Biologie: Zweistündige Klausur 0002D-0002I, mit Praxisanteil (Bestimmung von Arten der heimischen Flora), Leistungen aus den Praktika und Exkursionen (0002F-I) gelten als Prüfungsvorleistung für die Teilnahme an der Klausur.
Lehramt NwT: Geländepraktika unbenotete Vorleistungen zur Prüfung, die die Inhalte der Vorlesung 0002D behandelt.
Inhalte
- wichtige und typische Biotope der Oberrheinebene, des Kraichgaus und des Nordschwarzwalds

Materialien
- Bestimmungsbuch und bebilderte Floren, Exkursionsführer
- Lehrbücher der Pflanzensoziologie
- CD Hassler „Pflanzenwelt im nördlichen Landkreis Karlsruhe“, inzwischen auch online
- Botanischer Garten der Universität
- Internetmaterialien
Modul 0002H Zoologische Bestimmungsübungen

Lehrende: Taraschewski
Dauer: 2 SWS
Zyklus: SS, vier Kurse je 24 Plätze
Literatur: M. Schaefer: Brohmer - Fauna von Deutschland, Quelle & Meyer, (ab 22. Auflage)

Begleitvorlesung
LP: 3
Sprache: Deutsch
Lehrform: Praktikum 100 %

Leistungsnachweis:
Modul 0002I Zoologische Geländepraktika

Lehrende: Taraschewski, Petney, Windschnurer, Paulsen und externe Anbieter
Dauer: 1 SWS
Zyklus: jedes SS, n.V.
LP: 1
Anmeldung: über ILIAS und Studienportal
Plätze: 120
Sprache: Deutsch
Lehrform: Exkursion 100 %
Leistungsnachweis:
Allgemeine Biologie: Zweisündige Klausur 0002D-0002I, mit Praxisanteil (Bestimmung von Arten der heimischen Flora), Leistungen aus den Praktika und Exkursionen (0002F-I) gelten als Prüfungsvoerleistung für die Teilnahme an der Klausur.

Inhalte

- Ornithologische Exkursion
- Entomologische Exkursion
- Limnologische Exkursion
- Mikrolimnologische Exkursion

Materialien

- M. Schaefer: Brohmer - Fauna von Deutschland, Quelle & Meyer, neueste Auflage.
- W. Engelhardt: Was lebt in Tümpel, Bach und Weiher, Kosmos Naturführer
- Für feldornithologische Praktika geeignete Bestimmungsbücher für Vögel.
ANG 02B Praktikum Grüne Biotechnologie (nur Angewandte Biologie)

Lehrende: Focke, Lamparter, Mannuß, Puchta
Ansprechperson: Focke
Dauer: 4 SWS
Zyklus: jedes SS
LP: 4
Anmeldung: Vorbesprechung
Plätze: 30
Sprache: Deutsch
Lehrform: Praktikum 100 %

Leistungsnachweis: Zweistündige Klausur zu ANG-02B und ANG-02A. Leistungen aus dem Praktikum gehen in Form von Bonuspunkten zu maximal 20 % in das Klausurergebnis mit ein. Man muss sich elektronisch anmelden.

Kursprogramm

Das Praktikum soll die elementaren Techniken und Methoden vermitteln, die bei biotechnologischen Fragestellungen bei Höheren Pflanzen/ Mikroalgen (Cyanobacterien) eine Rolle spielen.

Inhalte

- **Gene Gun:** es wird eine spektakuläre Methode zur Transformation angewendet. Hierbei werden DNA beschichtete Goldpartikel in die Pflanzenzelle "geschossen".
- **Enzyme:** hier werden Methoden vermittelt, wie Enzyme aus pflanzlichen Gewebe extrahiert werden können und wie die Aktivität dieser Enzyme gemessen werden kann.
- **Molekularbiologie:** plastidäre DNA wird isoliert und mittels molekularbiologischer Methoden (Restriktionsverdau, Gelelektrophorese) analysiert.
- **Agrobakterien-Transformation:** Pflanzen werden mittels Agrobakterien transformiert und anschließend die Transformationsereignisse mit Hilfe des eingeführten Glucuronidase-Gens quantifiziert.
- **Mikroalgen:** Das Wachstum von Cyanobakterien wird unter verschiedenen Bedingungen getestet. Die Produktion von molekularem Wasserstoff (Biokraftstoff?) wird bestimmt.

Materialien

Renneberg R., Süßbier D: Biotechnologie für Einsteiger, Spektrum Akademischer Verlag 2009
ANG 02G Praktikum Mikroorganismen (nur für Angewandte Biologen)

Lehrende: Johannes Gescher
Dauer: 4 SWS, erste Semesterhälfte
Zyklus: jedes SS
LP: 4
Plätze: 30
Sprache: Deutsch
Lehrform: Kurs mit einführender Vorlesung
Leistungsnachweis: Klausur

Kursprogramm

Mikroben bestimmen das Leben auf unserem Planeten. Weder globale Stoffkreisläufe noch scheinbar profane Anwendung wie die Abwasseraufbereitung oder die Alkoholherstellung sind ohne sie denkbar. In diesem Modul bestehend aus einer Vorlesung und anschließendem Kurs möchte ich an Beispielen zeigen, was Mikroben sind, wozu sie fähig sind, wie wir mit ihnen umgehen können und was sie für uns zu leisten vermögen. Dazu sollen grundlegende theoretische und praktische Kenntnisse der Mikrobiologie und Molekularbiologie vermittelt werden. Erlerntes wollen wir mit den Studenten in den Praxisbezug setzen und diesen durch Exkursionen noch unterstreichen und Gastvorträge unterstreichen.

Materialien

Modul 0002J Tutorium zu Modul 0002

Lehrende: Studierende der höheren Semester
Dauer: 3 x 1 SWS
Zyklus: jedes SS,
LP: 3
Anmeldung: Über Listen bei der Vorbesprechung zu Teilmodulen 0002B-C bzw. 0002D-0002I
Plätze: 20 je Tutorium in parallelen Gruppen
Sprache: Deutsch
Lehrform: Gruppenarbeit 100 %
Leistungsnachweis: Bearbeitete Übungen (für Teilmodule 0002B-C bzw. 0002D-I)

Inhalte:
Der Stoff von Vorlesungen und Praktika wird anhand von gemeinsam in Gruppen zu bearbeitenden Übungsfragen vertieft.

Materialien: siehe Teilmodule 0002B-0002I
Modul B10 Chemie (Organik)

Qualifikationsziele Modul B10 (Organik)

Die Studierenden erwerben sich theoretische und praktische Grundkenntnisse der Chemie

- Sie können mit Gefahrstoffen und Laborgeräten sicher umgehen
- Sie können grundsätzliche Labortechniken (Wägen, Messen, Kalibrieren) anwenden
- Sie können chemisch rechnen
- Sie kennen die Grund-Eigenschaften wichtiger Elemente und Ionen
- Sie verstehen die Grundlagen qualitativer und quantitativer Analytik
- Sie verstehen Bindung, Struktur und Systematik organischer Verbindungen
- Sie kennen Struktur und Funktion wichtiger organischer Stoffklassen
- Sie können grundsätzliche Reaktionen der organischen Synthese verstehen und durchführen
- Sie kennen die wichtigsten Methoden der Biochemie
- Sie verstehen die Gesetzmäßigkeiten in Struktur und Funktion von Proteinen und Lipiden
- Sie verstehen die chemischen Grundlagen für Biomembranen und Transport
- Sie kennen die Prinzipien wichtiger Stoffwechselwege
Modul 00010C / ANG 10C Vorlesung organische Chemie

Lehrende: Bräse, Podlech
Dauer: 3 SWS
Zyklus: jedes SS
LP: 3
Anmeldung: Studienportal
Plätze: 100
Sprache: Deutsch
Lehrform: Vorlesung 100 %

Inhalte

- Struktur organischer Moleküle und intermolekulare Wechselwirkungen
- Einführung in Reaktionen organischer Moleküle
- Kinetik, Acidität/Basizität, Mechanismen
- Alkane und deren Reaktionen, Nomenklatur und Stereochemie
- Alkene, Halogenalkane
- Aromhole und Ether und deren Reaktionen
- Aldehyde und Ketone
- Carbonsäuren und deren Derivate
- Amine und Thirole
- Lipide, Zucker, Aminosäuren
- Nucleinsäuren und Biomakromoleküle

Materialien

- Internetquellen
Lehrende: Bräse, Foitzik, Podlech
Dauer: 6 SWS (Praktikum) + 2 SWS (Seminar)
Zyklus: jeweils vor jedem Semester als Block von 4 Wochen
Plätze: 76
Sprache: Deutsch
Lehrform: Praktikum 85 %, Seminar 15 %

Inhalte

Die Praktikanten müssen während dieses 4wöchigen Praktikums 6 Präparate darstellen, die aus folgenden Bereichen stammen:

- Block 1, 1 Präparat Radikalische Substitution, Nucleophile Substitution am gesättigten Kohlenstoffatom
- Block 2, 1 Präparat Eliminierung unter Bildung von C-C-Mehrfachbindungen, Addition an nichtaktivierten C-C-Mehrfachbindungen
- Block 3, 1 Präparat Elektrophile und nucleophile Substitution am Aromaten, Oxidation und Dehydrierung
- Block 4, 2 Präparate Reaktionen von Carbonylverbindungen
- Block 5, 1 Präparat Reaktionen weiterer heteroanaloger Carbonylverbindungen, Umlagerungen

Materialien

- Organikum, Wiley-VCH, Weinheim
- Internetmaterialien
3. Semester

Modul B03 Allgemeine Biologie 3

Das Modul Allgemeine Biologie 3 vertieft die molekularen Grundlagen der modernen Biologie. Neben der Molekularbiologie der Pflanzen im Rahmen des Pflanzenphysiologischen Praktikums stehen daher Vorlesungen in Mikrobiologie, Genetik und Molekularbiologie auf dem Programm, die durch ein begleitendes Molekularbiologisches Praktikum vertieft werden.

Qualifikationsziele Modul B03

Die Studierenden vertiefen ihr Wissen um die molekularen Grundlagen des Lebens und die technischen Möglichkeiten Lebewesen über Veränderung ihrer Gene oder deren Expression zu manipulieren. Dies umfasst ein tieferes theoretisches Verständnis folgender Bereiche

- Einführung in die molekulare Biologie der Pflanzen, Besonderheiten des pflanzlichen Stoffwechsels, transgene Pflanzen
- Mikrobiologie
- Genetik
- Molekularbiologie

Sie wenden dieses Wissen an pflanzlichen und mikrobiellen Systemen praktisch an und beherrschen

- Grundtechniken molekularbiologischen Arbeitens
- Gute mikrobiologische Praxis
- Umgang mit gentechnisch veränderten Organismen der Sicherheitsstufe 1
- Transformation von prokaryotischen und eukaryotischen Mikroorganismen und Pflanzen

Modulteile

- 0003A Praktikum Pflanzenphysiologie
- 0003B / ANG 03A Mikrobiologie
- 0003C / ANG 03B Genetik
- 0003D / ANG 03C Molekularbiologie
- 0003E / ANG 03E Praktikum Molekularbiologie
- ANG 03D Enzymtechnik
- ANG 03F Praktikum Technische Biologie
- 0003F Tutorium zu Modul 3
Modul 0003A Pflanzenphysiologisches Praktikum

Lehrende Buschmann, Focke
Dauer 4 SWS
Zyklus jedes WS,

LP 7

Anmeldung Über das elektronische Vorlesungsverzeichnis, Vorbesprechung (mit Verteilung der Praktikumsplätze) für Modul 0003 jeweils unmittelbar vor Beginn der Vorlesungszeit.
Plätze 100
Sprache Deutsch
Lehrform Praktikum 100 %

Klausur: Man muss sich elektronisch anmelden. Dies gilt auch für Lehramt Biologie

Inhalte

Materialien

• Praktikumsskript
• Teilnahme am Tutorium zum Pflanzenphysiologischen Praktikum für Anfänger.
Modul 0003B/ ANG-03A Mikrobiologie

Lehrende: Fischer

Dauer: 3 SWS
Zeit: jedes WS, Mo 8:00-9:30, Mi 8:00-8:45
Credit Points: 3
Ort: Mo, Criegee HS, HS III (R105) Geb 30.41

Anmeldung: keine Anmeldung nötig
Plätze: 120
Sprache: Deutsch
Lehrform: Vorlesung 100 %

Klausur: Man muss sich elektronisch anmelden. Dies gilt auch für die Studiengänge Chemische Biologie und die Studienrichtung Angewandte Biologie. Lehramt (inclusive NwT) melden sich momentan noch über eine Liste am Klausurtag an.

Inhalte
• Struktur und Funktion der prokaryotischen Zelle
• Systematik, Phylogenie, Evolution
• Mikrobielles Wachstum
• Biogeochemische Stoffzyklen
• Energiestoffwechsel und Biosyntheseleistungen
• Mikroorganismen und Umwelt
• Biotechnologie

Materialien
• K. Munk (Hrsg.) Grundstudium Mikrobiologie, Spektrum Vlg.
• Madigan/Martinko/Parker "Brock Mikrobiologie (Hrsg. W. Goebel), Spektrum
• G. Fuchs "Allgemeine Mikrobiologie", Thieme Vlg.
• Internetmaterialien
Modul 0003C/ ANG-03B Genetik

Lehrende: Kämper
Dauer: 2 SWS
Zyklus: jedes WS, alternierend mit 0003D, Plan in Vorlesung bekanntgegeben
LP: 2

Anmeldung: keine Anmeldung nötig
Plätze: 120
Sprache: Deutsch
Lehrform: Vorlesung 100 %

Klausur: Man muss sich elektronisch anmelden. Dies gilt auch für die Studiengänge und Chemische Biologie und die Studienrichtung Angewandte Biologie, Lehramt Biologie momentan noch per Liste am Klausurtag.

Inhalte

Materialien
- Inhalt der Vorlesung in Stichworten
- Internetmaterialien
Modul 0003D/ ANG-03C Molekularbiologie

Lehrende: Requena
Dauer: 2 SWS
Zyklus: jedes WS,
LP: 2
Plätze: 120
Sprache: Deutsch
Lehrform: Vorlesung 100 %

Klausur: Man muss sich elektronisch im Studienportal anmelden. Dies gilt auch für die Studiengänge Lehramt Biologie und Chemische Biologie und die Studienrichtung Angewandte Biologie

Inhalte

Molekularbiologie Einleitung, DNA extraktion, Restriktionsenzymen, Klonierung in Vektoren, Bibliothek screening, Bioinformatik, Sequenzierung, Genome sequencing, RNA, Northern-blot, RT-PCR, Real time PCR, cDNA Bibliothek, Microarrays, Rekombinante Proteine, Western blot, Affinity chromatography, Mutagenesis, Transformation

Materialien

• Lehrbücher der Molekularbiologie, z.B. Molekulare Zellbiologie-Lodish (Spektrum), Watson-Molekularbiologie (Pearson)
• Internetmaterialien
Modul 0003E/ ANG 03E Molekularbiologisches Praktikum

Lehrende: Fischer, Gescher, Kämper, Requena und Mitarbeiter
Dauer: 4 SWS
Zyklus: jedes WS, Di oder Mi
LP: 8

Anmeldung: Vorbesprechung (mit Verteilung der Praktikumsplätze) für Modul 0003 jeweils unmittelbar vor Beginn der Vorlesungszeit
Plätze: 120
Sprache: Deutsch
Lehrform: Vorlesung 100%

Klausur: Man muss sich elektronisch anmelden. Dies gilt auch für die Studiengänge Lehramt Biologie und Chemische Biologie und die Studienrichtung Angewandte Biologie

Inhalte

Mikrobiologie:

Genetik:
Prokaryotische Genregulation (lac-Operon); Mutation (spontane Resistenz, Aimes-Test); Vererbung von Polymorphismen (PCR-Analyse eines humanen Markers); Transformation von Bakterien, Plasmidkartierung.

Molekularbiologie:
genomische und Plasmid DNA Extraktion, Restriktionsanalyse, DNA-Elektrophorese und Southern blot

Materialien
Praktikumsskript
Lehrbücher Genetik und Mikrobiologie (siehe 0003B, 0003C)
weitere Informationen
ANG 03F Praktikum Technische Biologie (nur Angewandte Biologen)

Lehrende: Johannes Gescher
Dauer: 2 SWS
Zeit: jedes WS
LP: 4
Plätze: 30
Sprache: Deutsch
Lehrform: Kurs mit einführender Vorlesung

Leistungsnachweis: Klausur

Kursprogramm

In diesem Praktikum sollen Routinemethoden der angewandten Biologie erlernt und vertieft werden. Wir möchten den Studenten in einem einwöchigen Blockkurs alle Schritte näher bringen, die zwischen dem Plan ein Gen für ein Protein zu klonieren und seiner letztendlichen Reinigung liegen.

Die angewandten Biologen sollen lernen:
- wie man Primer für eine Klonierung ableitet
- welche Standardmethoden und welche neueren Methoden für Klonierungen existieren
- was bei der Überexpression eines Gen zu beachten ist
- wie bakterielle Zellen aufgeschlossen werden können und
- wie man Proteine über einen Affinitätstag reinigen kann

Materialien
Kusscript
ANG 03D Enzymtechnik (nur für Angewandte Biologen)

Lehrende: Syldatk
Ansprechperson: Syldatk
Dauer: 3 SWS
Zeit: jedes WS,
LP: 3
Anmeldung: Vorbesprechung
Plätze: 30
Sprache: Deutsch
Lehrform: Praktikum 100 %

Leistungsnachweis: Zweistündige Klausur zu ANG-03B und ANG-03A. Leistungen aus dem Praktikum gehen in Form von Bonuspunkten zu maximal 20 % in das Klausurergebnis mit ein.

Kursprogramm

Es werden Grundlagen der Gebiete Enzymtechnologie und Biokatalyse inklusive Screening, Enzymkinetik, Enzymreinigung, Immobilisierung und aktueller Neuentwicklungen im Überblick behandelt.

VL 1 - Einführung und Definitionen
VL 2 - Arbeitsfelder und Techniken
VL 3 - Generelle Eigenschaften und Kinetik von Biokatalysatoren
VL 4 - Chiralität in der Enzymtechnik
VL 5 - Analysenmethoden in der Enzymtechnik
VL 6 - Screening und Biokatalysatoroptimierung
VL 7 - Produktion und Reinigung von Enzymen
VL 8 - Stabilisierung und Immobilisierung
VL 9 - Enzyme und organische Lösungsmittel
VL 10 - Enzyme in Futter und Lebensmitteln
VL 11 - Enzyme in der Lebensmittelindustrie
VL 12 - Enzyme in der pharmazeutischen und chemischen Industrie
VL 13 - Analytische Anwendungen von Enzymen
VL 14 - Zusammenfassung und Ausblick

Materialien: Internetressourcen
Modul 0003F Tutorien zu Modul 3

Lehrende: Studierende der höheren Semester

Dauer: 1 SWS

Zyklus: jedes WS, Mi 10:30-11:15 für 0003A (Pflanzenphysiologie), Di 13:15-14:00 für 0003B-E (Mikrobiologie, Genetik, Molekularbiologie)

LP: 1

Ort: wird bei der Vorbesprechung zu den Praktika bekanntgegeben.

Anmeldung: keine Anmeldung notwendig

Plätze: 20 je Tutorium in parallelen Gruppen

Sprache: Deutsch

Lehrform: Gruppenarbeit 100 %

Leistungsnachweis: Bearbeitete Übungen

Inhalte

Der Stoff des Pflanzenphysiologischen Praktikums (0003A) bzw. der Vorlesungen Mikrobiologie (0003B), Genetik (0003C) und Molekularbiologie (0003D) wird anhand von gemeinsam in Gruppen zu bearbeitenden Übungsfragen vertieft.

Materialien

Siehe Teilmodule 0003A-0003D
Modul B10 Chemie (Biochemie)

Qualifikationsziele Modul B10

Die Studierenden erwerben sich theoretische Grundkenntnisse der Biochemie

- Sie kennen die wichtigsten Methoden der Biochemie
- Sie verstehen die Gesetzmäßigkeiten in Struktur und Funktion von Proteinen und Lipiden
- Sie verstehen die chemischen Grundlagen für Biomembranen und Transport
- Sie kennen die Prinzipien wichtiger Stoffwechselwege

Modul 0010E Biochemie

Lehrende Breitling
Dauer 2 SWS
Zyklus jedes WS, LP 2

Anmeldung Keine Anmeldung notwendig
Plätze 120
Sprache Deutsch
Lehrform Vorlesung 80 %, eigenständige Literaturarbeit 20 %

Klausur: Man muss sich elektronisch anmelden (dies gilt auch für die Studienrichtung Angewandte Biologie).

Inhalte

- Biophysikalische Grundlagen: Thermodynamik, Kinetik, Spektroskopie
- Proteine: strukturelle Prinzipien, funktionelle Konsequenzen
- Enzyme: Grundlagen der Katalyse, Kofaktoren
- Enzymkinetik: quantitative Beschreibung, Inhibitoren
- Enzymmechanismen: Regulation, Beispiel Proteasen
- Funktionelle Proteinkomplexe: Antikörper, Muskel
- Lipide: Aufbau und Eigenschaften
- Biomembranen: Zusammensetzung und Verhalten
- Membranproteine: Bauprinzip, Funktionen
- Transport durch Membranen: Poren, Kanäle, Transporter
- Signaltransduktion: Rezeptoren, Liganden, Kaskaden

Materialien

- W. Müller-Esterl “Biochemie” (Spektrum Verlag)
- L. Stryer “Biochemie“ (Spektrum Verlag)
- K. Munk „Biochemie, Zellbiologie, Ökologie, Evolution“ (Spektrum Verlag)
- Horn/Lindenmeier/Moc/Grilhösl/Berghold/Schneider/Münster „Biochemie des Menschen“ (Thieme Verlag)
- Internetmaterialien
Modul B11 Mathematik

Qualifikationsziele Modul 0011

Die Studierenden erwerben sich Grundkenntnisse in Mathematik

- Sie verstehen Mathematische Methoden und Denkweisen
- Sie können naturwissenschaftliche in mathematische Fragestellungen übersetzen

Sie beherrschen die Grundzüge der Differential- und Integralrechnung
Modul 0011A ANG 11A Mathematik 1

Lehrende Grensing
Dauer 3 SWS (Vorlesung), 1 SWS (Übung)
Zyklus WS
LP 4
Anmeldung zur Teilnahme keine Anmeldung notwendig
Plätze 100
Sprache Deutsch
Lehrform Vorlesung 75 %, Übung 25 %

Klausur: 90-minütige Klausur erfolgreichere Bearbeitung der Übungsaufgaben ist notwendige Voraussetzung für das Bestehen dieses Moduls. Man muss sich elektronisch anmelden. Dies gilt auch für die Studienrichtung Angewandte Biologie

Inhalte

- **Grundlagen:**
 Zahlen, Ungleichungen, vollständige Induktion, binomische Formel

- **Funktionen:**
 Abbildungsbegriff, Funktionsgraph, Komposition von Abbildungen, Umkehrfunktion, Potenzfunktion, Polynome, rationale Funktionen, trigonometrische Funktionen

- **Grenzwerte:**
 Grenzwerte von Folgen, Konvergenzkriterien, Cauchyfolgen, Grenzwerte von Reihen, absolute Konvergenz, Konvergenzkriterien für Reihen, Potenzreihen, Grenzwerte und Stetigkeit bei Funktionen

- **Differentialrechnung für Funktionen einer Variablen:**
 Differenzierbarkeit, Ableitungsregeln, Taylorformel, Taylorreihen, Regel von de L'Hôpital

- **Integralrechnung für Funktionen einer Variablen:**
 Integrierbarkeit, bestimmte Integrale, unbestimmte Integrale, Hauptsatz der Differential- und Integralrechnung, Mittelwertsatz, Substitutionsregel, partielle Integration, Partialbruchzerlegung

- **Differentialgleichungen erster Ordnung:**
 Beispiele von Differentialgleichungen, Richtungsfeld, Separation der Variablen, Logistische Gleichung

Materialien

- Dürrschnabel, K. (2004): Mathematik für Ingenieure, Teubner Verlag
Modul B12A / ANG 12A Physik (Teil A)

Qualifikationsziele Modul B12

Die Studierenden erwerben sich Grundkenntnisse in Physik

- Sie verstehen die Grundlagen von Schwingungen und Wellen auf der Basis der Mechanik
- Sie kennen die Grundlagen der Thermodynamik
- Sie verstehen die Grundlagen von Elektrizität, Magnetismus und elektromagnetischen Wellen
- Sie kennen die Grundlagen von geometrischer und Wellenoptik
- Sie verstehen die Grundzüge von Quantenmechanik und Welle-Teilchen-Dualismus
- Sie kennen die physikalischen Grundlagen des Aufbaus von Atomen und Kernen

Modul 0012A / ANG 12 A Experimentalphysik A

Lehrende: Schimmel
Dauer: 4 SWS Vorlesung, 1 SWS Übung
Zyklus: jedes WS,
LP: 5
Anmeldung: zur Teilnahme an der Vorlesung ist keine Anmeldung notwendig, zur Teilnahme an den Übungen Eintragung in Listen nach der ersten Vorlesungsstunde,

Plätze: 100
Sprache: Deutsch
Lehrform: Vorlesung 67 %, Übung 33 %
Klausur: Dreistündige Klausur zu 0012A und 0012B, die vor Beginn des Wintersemesters angeboten wird (Nachklausur vor Beginn des Sommersemesters).

Inhalte

Materialien

Vorlesungsmitschriften genügen; ergänzend bieten sich die Standard-Lehrbücher der Physik im Nebenfach an, z.B. Tipler, Physik
4. Semester

Modul B04 / ANG-04 Allgemeine Biologie 4

Qualifikationsziele Modul B04

Die Studierenden verstehen die theoretischen Grundlagen aller in der modernen Biologie eingesetzten Methoden und sind in der Lage, wichtige Grundtechniken der modernen Biologie unter Anleitung erfolgreich durchzuführen. Dazu zählen folgende Techniken:

- Fluoreszenzmikroskopie
- Umgang mit fluoreszентen Proteinen und Immunfluoreszenz
- Western Blotting
- Genomische und RT-PCR
- Bioinformatische Analysen und Umgang mit Gen-Datenbanken

Sie können

- diese Grundtechniken an die jeweilige Fragestellung und an das jeweilige System anpassen
- sich gegen experimentelle Artefakte durch die Konzeption von Kontrollen absichern
- problemorientiert Strategien für eine umgrenzte biologische Fragestellung entwickeln
- erfolgreich in einem Forschungsteam arbeiten
- sich die für ihr Projekt nötige Information selber recherchieren
- selbstverantwortlich die Arbeit im Team einteilen und durchführen
- die Ergebnisse ihrer Arbeit verständlich und strukturiert vor anderen präsentieren

Modulteile

- 0004A / ANG 04A Grundtechniken der Biologie (Vorlesung)
- 0004B / ANG 04B Biologisches Methodenpraktikum (Praktikum)
- 0004C / ANG 04C Moderne Methoden der Biologie (Mentoriertes Seminar)
Modul 0004A / ANG-04A Grundtechniken der Biologie (Vorlesung)

Lehrende: Die Lehrenden der Biologie (Ringvorlesung), Ansprechpartner: Nick

Dauer: 4 SWS
Zyklus: jedes SS, Mo und Mi
LP: 4
Anmeldung: Anmeldung im Studienportal
Plätze: 120
Sprache: Deutsch
Lehrform: Vorlesung 100 %

Bewertung

Klausur zu den Modulteilen 0004A-0004C. Leistungen aus Praktikum (0004B) und Seminar (0004C) gehen in Form von Bonuspunkten mit maximal 10 % in das Ergebnis der Klausur mit ein. Man muss sich elektronisch anmelden. Dies gilt auch für die Studienrichtung Angewandte Biologie und die Studiengänge Chemische Biologie. Studierende Biologie Lehramt müssen sich bislang noch in Listen am Klausurtag eintragen.

Inhalte

Überblick über alle gängigen Methoden der modernen Biologie:

- Mikroskopie: Fluoreszenz- und Konfokalmikroskopie, Fluoreszent Proteine, Immunfluoreszenz, FISH
- Proteinmethoden: SDS-PAGE, Western, Transformation, Yeast Two Hybrid, rekombinante Proteine, Chromatographie, Proteinreinigung, Spektroskopie
- Genetische Methoden: Reportergene, reverse und forward genetics, PCR, Northern, Southern, Molekulare Phylogenie
- Quantitative Methoden: Umweltanalytik, Quantitative Ökologie, Bioinformatik, Quantitative Bildanalyse, Systembiologie

Einführung in die Prinzipien dieser Methoden
Gründliche Methodenkompetenz inclusive Methodenkritik und Artefaktbetrachtung
Einführung in quantitative und theoretische Ansätze

Materialien

Lehrbücher werden in den einführenden Vorlesungsstunden vorgestellt
Modul 0004B / ANG-04B Methodenpraktikum

Lehrende: Die Lehrenden der Biologie, Ansprechpartner: Nick

Dauer: 12 SWS

Zyklus: jedes SS, Die Studierenden zirkulieren in Form von 10 Gruppen durch ein rotierendes Versuchsprogramm, Zeitfenster Di-Fr Nachmittag 14-18,

LP: 18

Anmeldung: Vorbesprechung jeweils zu Beginn des SS.

Plätze: 120

Sprache: Deutsch

Lehrform: Praktikum 100 %

Bewertung

Klausur zu den Modulteilen 0004A-0004C. Leistungen aus Praktikum (0004B) und Seminar (0004C) gehen in Form von Bonuspunkten mit maximal 20 % in das Ergebnis der Klausur mit ein. Man muss sich elektronisch anmelden. Dies gilt auch für die Studienrichtung Angewandte Biologie und die Studiengänge Chemische Biologie und Biologie Lehramt.

Bonuspunkteregelung:

Gruppenprotokoll und Vortrag zu Teil 3 ergeben maximal 12 Bonuspunkte (10 % der Klausur).

Inhalt

Teil 1: Methodenzentrierte Versuche – die in der Vorlesung (Modul 0004A) behandelten zentralen Methoden werden in Form eines Versuchsprogramms durchlaufen: SDS-PAGE+Western Blot, Immunfluoreszenz+Fluoreszenzmikroskopie, Transformation und Fluoreszente Proteine, RNA-Extraktion+RT-PCR, Funktionelle Analysen (Phänotypisierung von Mutanten).

Teil 2: Theoretische Methoden der Biologie – als Block im Anschluss an Teil 1: Modellierung, Simulation, Systembiologie, Bioinformatik und Bildverarbeitung
Modul 0004C / ANG 04C Methodenseminar

Lehrende: Die Lehrenden der Biologie, Ansprechpartner: Nick
Dauer: 3 SWS
Zyklus: jedes SS
LP: 3
Anmeldung: Vorbesprechung (mit Verteilung der Praktikumsplätze nach elektronischer Abfrage) jeweils zu Beginn des SS.
Plätze: 100
Sprache: Deutsch
Lehrform: Seminar 50 %, Mentorierte Gruppenarbeit 50 %

Inhalte
- Problembasiertes Lernen
- Entwurf einer eigenen Fragestellung und eines experimentellen Ansatzes zu ihrer Lösung
- Wissenschaftlich korrekte Darstellung und Präsentation von experimentellen Befunden
- Diskussion und Deutung von experimentellen Befunden
- Methodenkritik, Entwurf von Negativ- und Positivkontrollen

Materialien siehe Internet
Modul B05 /ANG 05 Schlüsselkompetenzen 1

Qualifikationsziele Modul B05

Die Studierenden lernen komplexe Sachverhalte anderen einfach, aber dennoch korrekt zu erklären – eine zentrale Schlüsselqualifikation für die Biologie.

- Sie beherrschen Vortrags- und Präsentationstechniken
- Sie können Rhetorik und Auftreten dazu einsetzen, ihre Botschaft zu vermitteln
- Sie bauen durch den vorbereiteten Auftritt in einer realen Situation Ängste ab
- Sie können anderen konstruktive Rückmeldung geben
- Sie können eigene Stärken und Schwächen realistisch einschätzen und reflektieren
Modul 0005A / ANG 05A Schlüsselkompetenzen 1 (Mentorat)

Lehrende: Nick (Einführung), Gradl, Seyfried, Taraschewski (fachbezogene Teile)

Dauer: 1 SWS

Zyklus: jedes SS

LP: 1

Plätze: 100

Sprache: Deutsch

Lehrform: Mentorat 25 %, Eigenständige Gruppenarbeit 75 %

Leistungsnachweis: Portfolio zum Gesamtmodul

Inhalte

- Impulsreferat - Wie halte ich einen guten Vortrag?
- Die Studierenden erarbeiten gemeinsame Qualitätskriterien als Grundlage für Rückmeldung und Bewertung. Daraus wird ein "Rückmeldeformular" erstellt, das dann später in den Übungen eingesetzt wird.
- Die Teams haben zunächst die Aufgabe, zu ihren Themen jeweils eine kleine Dokumentation (ca. 5-10 Seiten) zu erstellen, die auch etwas eigene Recherche beinhaltet. Die Mentoren fungieren hier als Ansprechpartner, die Teams sollen aber weitgehend eigenständig arbeiten.

Materialien

- Müssen selbst recherchiert werden! Ausgangspunkt sind die Materialien aus Modul 0002.
Modul 0005B /ANG 05B Schlüsselkompetenzen 1 (Praktische Übungen)

Lehrende: Gradl (Tierphysiologischer Kurs), Seyfried (Botanische Bestimmungsübungen und Prophase), Taraschewski (Zoologischen Bestimmungsübungen)

Dauer: 1 SWS
Zeit: jedes SS Kursbegleitend bzw. als Block vor dem Wintersemester (Prophase)
LP: 2

Das Modul kann in folgenden Versionen absolviert werden

- im Zusammenhang mit dem Tierphysiologischen Kurs (Teilmodule 0002B und C)
- im Zusammenhang mit den Botanischen Bestimmungsübungen (Teilmodule 0002D, F und G)
- im Zusammenhang mit den Zoologischen Bestimmungsübungen (Teilmodule 0002E, H und I)
- im Zusammenhang mit der Prophase (als Block vor dem WS)

Plätze: 100
Sprache: Deutsch
Lehrform: Mentorat 25 %, Eigenständige Gruppenarbeit 75 %
Leistungsnachweis: Portfolio zum Gesamtmodul. Gewichtung: 50 % für die Dokumentation, 10 % für die „Trockenübung“, 30 % für die „echte“ Tutoratssituation, 10 % für die Rückschau. Das Modul gilt als bestanden, wenn mindestens 50 % erreicht wurden.

Inhalte
- „Trockenübung“ des Tutoriums.
- Durchführung des Tutoriums unter Beobachtung und Protokollierung durch die anderen Tutoren (gemäß den in 0005A definerten Kriterien).

Materialien
- Müssen selbst recherchiert werden! Ausgangspunkt sind die Materialien aus Modul 0002.

Die Studierenden dokumentieren die persönliche Entwicklung im Verlauf des Moduls durch ein Portfolio. Dies enthält:

A. Die von den Studierenden entwickelten Qualitätskriterien für ein gutes Tutorat.
B. Eine kurze Dokumentation (maximal 5-10 Seiten) des fachlichen Hintergrunds, der im jeweiligen Tutorat behandelt wurde inclusive der selbst recherchierten Literatur zur Thematik.
C. Die Beurteilung der „Trockenübung“ durch die anderen Studierenden der Gruppe anhand der in A entwickelten Kriterien.
E. Eine kurze persönliche Rückschau (maximal 1-2 Seiten) mit einer kurzen Darstellung der Stärken und Schwächen des eigenen Prozesses und einem Ausblick, woran man in der Zukunft persönlich arbeiten will.

Die Teile des Portfolios werden von den für das jeweilige Modul des 2. Semesters verantwortlichen Lehren- den bewertet und werden folgendermaßen gewichtet: 50 % für die Dokumentation, 10 % für die „Trocken- übung“, 30 % für die „echte“ Tutoratssituation, 10 % für die Rückschau. Das Modul gilt als bestanden, wenn mindestens 50 % erreicht wurden.
Modul ANG 11B Quantitative Biologie und Modellierung (für Angewandte Biologen)

Lehrende: Michael Riemann und Peter Ricke
Ansprechperson: Michael Riemann
Dauer: 4 SWS (V/Ü)
Zyklus: Lehrveranstaltung wird als Block in den letzten beiden Septemberwochen stattfinden
LP: 4
Anmeldung: im Studienportal
Plätze: 30
Sprache: Deutsch
Lehrform: Vorlesung/Übung

Leistungsnachweis: Leistungen aus den Übungen werden benotet

Kursprogramm

- Schreiben einfacher Computerprogramme mit Java
- Anwendung dieser Programme um mit Protein oder DNA-Sequenzen zu arbeiten
- Bearbeitung großer Datensätze
Modul B12B / ANG 12B Physik (Teil B)

Qualifikationsziele Modul B12

Die Studierenden erwerben sich Grundkenntnisse in Physik

- Sie verstehen die Grundlagen von Schwingungen und Wellen auf der Basis der Mechanik
- Sie kennen die Grundlagen der Thermodynamik
- Sie verstehen die Grundlagen von Elektrizität, Magnetismus und elektromagnetischen Wellen
- Sie kennen die Grundlagen von geometrischer und Wellenoptik
- Sie verstehen die Grundzüge von Quantenmechanik und Welle-Teilchen-Dualismus
- Sie kennen die physikalischen Grundlagen des Aufbaus von Atomen und Kernen

Modul 0012B / ANG 12B Experimentalphysik B

Lehrende: Schimmel
Dauer: 4 SWS Vorlesung, 1 SWS Übung
Zyklus: jedes SS
LP: 5

Anmeldung: zur Teilnahme an der Vorlesung Anmeldung im Studienportal, zur Teilnahme an den Übungen Eintragung in Listen nach der ersten Vorlesungsstunde
Plätze: 100
Sprache: Deutsch
Lehrform: Vorlesung 67 %, Übung 33 %
Klausur: Dreistündige Klausur zu 0012A und 0012B, die vor Beginn des Wintersemesters angeboten wird (Nachklausur vor Beginn des Sommersemesters).

Inhalte

Materialien
Vorlesungsmitschrift genügt; ergänzend bieten sich die Standard-Lehrbücher der Physik im Nebenfach an, z.B. Tipler, Physik
5. Semester

Modul B06 Allgemeine Biologie 5

Qualifikationsziele Modul B06

Die Studierenden sind in der Lage konzeptionell und vernetzt zu denken. Sie haben folgende Fähigkeiten erworben.

- Sie können am Beispiel biologischer Modellorganismen problemorientiert denken
- Sie beherrschen Grundkonzepte biologischer Modellbildung und Wissenschaftstheorie
- Sie sind in der Lage, differenziert ethische Aspekte der Biologie zu diskutieren
- Sie können Problemstellungen formulieren und experimentelle Strategien entwickeln
- Sie können wissenschaftliche Publikationen kritisch lesen
- Sie können eigenständig recherchieren und bibliographieren
- Sie sind in der Lage, einen eigenen wissenschaftlichen Standpunkt zu entwickeln

Modulteile

- 0006A Modellorganismen in der Biologie (Vorlesung)
- 0006B Modellbildung und Ethik in der Biologie (Vorlesung / Seminar)
- 0006C / ANG 06B Konzepte der modernen Biologie (Seminar)
- ANG 06A Bioverfahrenstechnik
Modul 0006A Modellorganismen in der Biologie (Vorlesung)

Ringvorlesung: Ringvorlesung, Ansprechpartner: Nick
Dauer: 3 SWS
Zyklus: jedes WS
LP: 3
Plätze: 100
Sprache: Deutsch
Lehrform: Vorlesung 100 %

Klausur: Man muss sich elektronisch im Studienportal anmelden. Dies gilt auch für die Studiengänge Lehramt Biologie und Chemische Biologie. Leistungen aus Hausarbeiten (0006A, B) und Seminar (0006C) gehen in Form von Bonuspunkten in das Ergebnis der Klausur mit ein.

Einführung

Was sind Modellorganismen?

Mikroorganismen

- Prokaryoten
- Archea
- Hefe
- Filamentöse Pilze
- Pflanzen-Mikroben-Interaktion

Pflanzen

- Arabidopsis
- Reis
- Moos

Tiere

- Parasiten und Caenorhabditis
- Fisch und Huhn
- Amphibien
- Maus
- Säugerzellkulturen
Modul 0006B Modellbildung und Ethik in der Biologie

Qualifikationsziele zu Modul 0006B

Die Studierenden lernen, ihr eigenes Denken und Handeln in der Biologie zu hinterfragen und zu reflektieren, was sie tagaus tagein eigentlich tun.

- Sie können zentrale biologische Begriffe (Leben, Gen, Organismus, Art) als Prozesse verstehen und richtig anwenden
- Sie lernen, wissenschaftliche Redehandlungen (Beschreiben, Erklären, Auffordern) zu unterscheiden und richtig anzuwenden
- Sie lernen, wissenschaftliche Erkenntnismethoden (Sehen, Beobachten, Experimentieren) zu unterscheiden und richtig anzuwenden
- Sie entwickeln ein Bewusstsein für den funktionalen Kontext von Erkenntnis
- Sie können zentrale Methoden wissenschaftlichen Arbeitens (Modell, Reduktion, Falsifizierung) durchdringen und korrekt anwenden
- Sie können naturalistische Fehlschlüsse erkennen, benennen und mit Beispielen belegen
- Sie kennen die wichtigsten Ansätze für die ethische Bewertung biologischer Forschung (Utilitarismus, Verantwortungsethik)
- Sie können ethische Bewertung als prozessuales Geschehen verstehen, darstellen und anwenden.

Dauer: 1 SWS
Zyklus: jedes WS
LP: 1
Plätze: 100
Sprache: Deutsch
Lehrform: Vorlesung 100 %

Klausur: 25% (30 Punkte) der Klausur zu BA06, davon 18 Punkte aus Übung.
0006C / ANG-06B Seminar Konzepte der modernen Biologie

Lehrende: die Lehrenden der Biologie - wählbar aus verschiedenen Bereichen, siehe unten

Dauer: 2 SWS
Zeit: jedes WS, wählbar an jeweils einem Wochentag
LP: 3

Plätze: insgesamt 96 Plätze (12 pro Seminar)
Sprache: Deutsch / Englisch
Lehrform: Seminar 60%, Eigenrecherche und Gruppenarbeit 40%

Bewertung

Seminarvortrag, der abhängig von der Leistung in Form von maximal 12 Bonuspunkten in das Ergebnis der Klausur zu B06A und B06B mit eingeht.

Inhalte

- Wichtige Konzepte im jeweiligen Gebiet der Biologie
- Modellbildung und Diskussion
- Einüben von eigenständiger Recherche und Bibliographie
- Präsentation von Forschungsinhalten
- Kritische Analyse von Forschungspublikationen

Das Seminar wird als Wahlpflichtveranstaltung für mehrere Gebiete angeboten:

- Wissenschaftstheorie und Ethik in der Biologie, Nick
- Photorezeptoren, Lamparter
- Zell- und Entwicklungsbioologie der Pflanzen, Nick
- SOS-Seminar Entwicklungsbioologie, Gradl
- Mikrobiologie, Fischer, Requena
- Aktuelle Themen der molekularen Genetik, Kämper
- Molekularbiologie und Biochemie der Pflanzen, Puchta
- Current Topics in Cellular Neurobiology, Bastmeyer, Bentrop und Weth
- Trends in Ecology, Taraschewski, Petney

Materialien

Internetmaterialien (siehe oben bei den einzelnen Fachliteratur)
ANG 06A Bioverfahrenstechnik

Lehrende: Prof. Posten
Ansprechperson: Prof. Posten
Dauer: 2 SWS (V)
Zeit: jedes WS
LP: 2
Anmeldung: Studienportal
Plätze: 30
Sprache: Deutsch
Lehrform: Vorlesung 100%

Die während des Praktikums zu Modul 8A erhaltenen Bonuspunkte für Protokoll, Vortrag und z.T. noch andere Leistungen, werden dieser zweiten Prüfung zugerechnet.
Modul B07 Schlüsselkompetenzen 2 - Recherchetechniken

Qualifikationsziele Modul B07

Die Studierenden können für eine spezifische Frage die relevanten Informationsquellen recherchieren, zu filtern und für sich erschließen.

- Sie können effizient wissenschaftlich bibliographieren
- Sie können mit Fachdatenbanken umgehen
- Sie können Fragestellung so entwickeln, dass sie recherchierbar werden
- Sie können Informationen priorisieren, filtern und für die Fragestellung erschließen
Modul 0007 Schlüsselkompetenzen 2 (Mentorat)

LP: 3
Zyklus: WS
Studiengang: Bachelor Biologie
Studienabschnitt: 5. Semester
Pflicht / Wahlpflicht: Pflicht / Wahlpflicht

Dieses Modul kann in folgenden Versionen absolviert werden:

- im Zusammenhang mit dem Zoologischen Anfängerpraktikum (Teilmodule 0001B und D)
- im Zusammenhang mit dem Botanischen Anfängerpraktikum (Teilmodule 0001C und E)
- im Zusammenhang mit dem Pflanzenphysiologischen Praktikum (Teilmodul 0003A)
- im Zusammenhang mit den Modulen Mikrobiologie, Genetik und Molekularbiologie (Teilmodule 0003B-D)

Ansprechpersonen: Nick (allgemeine Fragen, Teil 0007A), Bentrop (Tutorat zu Teilmodulen 0001B und D), Seyfried (Tutorat zu Teilmodulen 0001C und E), Focke (Tutorat zu Teilmodul 0005A), Fischer, Kämper, Requena (Tutorat zu Teilmodulen 0003B-D)
Voraussetzung: Zulassung zum Bachelor Biologie

Turnus: jedes WS

Bewertung

Die Studierenden dokumentieren die persönliche Entwicklung im Verlauf des Moduls durch ein Portfolio. Dies enthält:

A. Die von den Studierenden entwickelten Qualitätskriterien für ein gutes Tutorat.
B. Eine kurze Dokumentation (maximal 5-10 Seiten) des fachlichen Hintergrundes, der im jeweiligen Tutorat behandelt wurde inclusive der selbst recherchierten Literatur zur Thematik.
C. Die Beurteilung der „Trockenübung“ durch die anderen Studierenden der Gruppe anhand der in A entwickelten Kriterien.
E. Eine kurze persönliche Rückschau (maximal 1-2 Seiten) mit einer kurzen Darstellung der Stärken und Schwächen des eigenen Prozesses und einem Ausblick, woran man in der Zukunft persönlich arbeiten will.

Die Teile des Portfolios werden von den für das jeweilige Modul des 2. Semesters verantwortlichen Lehrenden bewertet und werden folgendermaßen gewichtet: 50 % für die Dokumentation, 10 % für die „Trockenübung“, 30 % für die „echte“ Tutoratssituation, 10 % für die Rückschau. Das Modul gilt als bestanden, wenn mindestens 50 % erreicht wurden.

Lernziele

- Fachbezogene Übung von Recherche-techniken
- Fachbezogene Übung von Techniken der Informationsfilterung und –prozessierung (z.B. SQ3R)
- Einführung in die Recherche- und Bibliographie-Werkzeuge der UB
Modul ANG 07 Schlüsselqualifikationen Biotechnologie und Gesellschaft
(nur für Angewandte Biologen)

Lehrende: Johannes Gescher, Reinhard Fischer, Dozenten aus Gesellschaft und Wirtschaft
Ansprechperson: Johannes Gescher
Dauer: 3 SWS (V, S, Ü, E)
Zeit: jedes WS
LP: 6
Anmeldung: Studienportal
Plätze: 30
Sprache: Deutsch
Lehrform: integrierte Form aus Vorlesung, Präsentationen, Exkursion, Seminar und Übungen

Leistungsnachweis

Es wird eine Klausur geschrieben, die Klausurnote wird mit der Note von Modul ANG-08 verrechnet.

Das Modul umfasst vier Teile:
- Teil 1: Übung von praxisrelevanten soft skills (Schwerpunkt auf Zeitmanagement und Bewerbungs-training)
- Teil 2: Von der Idee zur industriellen Umsetzung (Fördermittel, Patent, rechtliche und wirtschaftliche Rahmenbedingungen)
- Teil 3: Exemplarische Vorstellung von Berufsfeldern (Bioenergie, Weiße Biotechnologie)
- Teil 4: Exkursion zu Biotechnologiefirmen
Modul B08/ ANG-08 Biologische Forschung

Hier kann man sich einen Bereich auswählen, in dem man sich vertiefen und auch die Bachelorarbeit absolvieren möchte. Es geht darum, exemplarisch konzeptionell und methodisch einen biologischen Bereich tiefer zu durchdringen.

Qualifikationsziele Modul B08

Die Studierenden erschliessen sich in Theorie, Praxis und Methodik einen Bereich ihrer Wahl.

- Sie erwerben sich einen vertieften Einblick in biologische Konzepte
- Sie üben problemorientes Denken und experimentelles Design
- Sie erwerben sich Geläufigkeit im Umgang mit modernen biologischen Methoden
- Sie lernen, ein wissenschaftliches Projekt eigenständig zu konzipieren und zu bearbeiten
- Sie lernen, anderen den Inhalt der eigenen Arbeit verständlich und klar zu präsentieren
- Sie lernen, problemorientiert Informationen zu sammeln
- Sie können wissenschaftliche Daten kritisch hinterfragen
Modul 0008A / ANG 08A Aktuelle Aspekte Biologische Forschung

LP: 2
Dauer: 2 SWS

Zyklus: im Anschluss an das WS
Studiengang: Bachelor Biologie, Lehramt und Bachelor Chemische Biologie
Studienabschnitt: im Anschluss 5. Semester
Pflicht / Wahlpflicht: Wahlpflicht
Plätze: 100
Sprache: Deutsch
Lehrform: Vorlesung 100 % innerhalb der gewählten Arbeitsgruppe

Klausur Man muss sich elektronisch im Studienportal anmelden. Dies gilt auch für die Studiengänge Lehramt Biologie und Chemische Biologie
Leistungen aus Protokollen gehen in Form von Bonuspunkten in das Ergebnis der Klausur mit ein.

Modul 0008B / ANG 08B Aktuelle Aspekte Biologische Forschung

LP: 6
Dauer: 10 SWS

Zyklus: im Anschluss an das WS
Studiengang: Bachelor Biologie, Lehramt und Bachelor Chemische Biologie
Studienabschnitt: im Anschluss 5. Semester
Pflicht / Wahlpflicht: Wahlpflicht
Plätze: 100
Sprache: Deutsch
Lehrform: Praktikum in gewählter Arbeitsgruppe
Modul 0011 Teil Statistik

Qualifikationsziele Modul B11(Teil Statistik)

Die Studierenden erwerben sich Grundkenntnisse in Statistik

- Sie verstehen die Prinzipien deskriptiver und induktiver statistischer Methoden
- Sie kennen die Grundlagen der Wahrscheinlichkeitstheorie
- Sie können die Anwendbarkeit statistischer Verfahren auf ein Problem einschätzen
- Sie können Datensätze aus biologischen Fragestellungen statistisch untersuchen

Modul 0011B / ANG 11C Statistik Vorlesung

Lehrende Henze, Kadelka, Klar
Dauer 3 SWS (Vorlesung), 1 SWS (Übung)
Zeit jedes WS, LP 4
Anmeldung Studienportal
Plätze 100
Sprache Deutsch
Lehrform Vorlesung 75 %, Übung 25 %

Klausur 90-minütige Klausur, erfolgreiche Bearbeitung der Übungsblätter ist notwendige Voraussetzung für das Bestehen dieses Moduls. Man muss sich elektronisch anmelden. Dies gilt auch für die Studienrichtung Angewandte BiologieDie Note dieser Klausur geht nicht in die Bachelornote ein, man muss die Klausur jedoch bestehen.

Inhalte

- Statistische Maßzahlen und graphische Darstellungen
- Regressions- und Korrelationsanalyse
- Zufallsexperimente, zufällige Ereignisse und Wahrscheinlichkeiten
- Statistische Verteilungen, Zufallsvariablen und ihre Kenngrößen
- Bedingte Wahrscheinlichkeiten und stochastische Unabhängigkeit
- Der zentrale Grenzwertsatz der Statistik
- Parameter-Schätzung und Konfidenzbereiche
- Grundbegriffe der Testtheorie: Ein-Stichproben-Tests
- Vergleich von zwei oder mehr Stichproben, Varianzanalyse (ANOVA)
- Unabhängigkeits tests
- Anpassungstests, z.B. Tests auf Normalverteilung
- Statistische Analyse von Kontingenztafeln

Materialien

- Skriptum zur Vorlesung
Modul 0011C/ ANG 11D Rechnergestützte Übungen zur Statistik

Lehrende Ebner
Dauer 2 SWS (Übung)
Zeit Block-Kurs nach dem WS. Mo, den 11.02.2013, bis Fr, den 15.02.2013, jeweils von 9:00 - 12:00 Uhr und von 14:00 - 16:30 Uhr
Ort RZ Raum 114.1 Geb 20.21

Credit Points 2
Ort Rechenzentrum, K oder L-Pool

Anmeldung zur Teilnahme Anmeldung notwendig (s. unten)
Plätze 75
Sprache Deutsch
Lehrform Computerpraktikum 100 %
Leistungsnachweis Selbständige Bearbeitung konkreter Aufgaben am Computer. Man muss sich elektronisch anmelden. Dies gilt auch für die Studienrichtung Angewandte Biologie.

Inhalte

- Einsatz eines Statistikprogramms
- Durchführung der in 0011B vermittelten statistischen Verfahren
- Analyse konkreter Beispieldatensätze

Materialien

- Praktikumsskript
- Sammlung von konkreten Beispielen []
6. Semester

Modul 09 Bachelorarbeit

Hier soll die eigenständige Bearbeitung einer wissenschaftlichen Themenstellung geübt werden. Dies geschieht in kleinen Teams, die betreut, aber doch sehr eigenständig arbeiten. Die Themen sind eingebunden in laufende Forschungsprojekte der anbietenden Arbeitsgruppen.

Qualifikationsziele Modul B09 (Bachelorarbeit)

Die Studierenden führen eine eigenständige experimentelle Forschungsarbeit durch

- Sie üben beispielhaft vernetztes und problemorientiertes Denken
- Sie entwerfen eigenständig eine Forschungsstrategie und führen diese dann aus
- Sie können geläufig und kompetent mit modernen biologische Methoden umgehen
- Sie lernen, ein wissenschaftliches Projekt eigenständig zu konzipieren und zu bearbeiten
- Sie lernen, den Inhalt der eigenen Arbeit verständlich und klar zu präsentieren
- Sie lernen, problemorientiert Informationen zu sammeln
- Sie lernen und üben, wie eine wissenschaftliche Arbeit geschrieben wird
- Sie lernen und üben, eigene und andere Ergebnisse kritisch zu hinterfragen und zu bewerten

LP: 16
Dauer: 24 SWS

Zyklus: im Anschluss an Modul 8
Studiengang: Bachelor Biologie, Bachelor Chemische Biologie
Studienabschnitt: 6. Semester
Pflicht / Wahlpflicht: Wahlpflicht
Plätze: 100
Sprache: Deutsch/ Englisch
Lehrform: Praktikum in gewählter Arbeitsgruppe
Erfolgskontrolle: Schriftliche Arbeit und abschließendem Vortrag; Notenbildung:
Die Note ergibt sich aus der Bewertung der Bachelorarbeit und des abschließenden Vortrags, der in die Bewertung eingeht